Modeling Resilience in Cloud-Scale Data Centers

John Cartlidge
School of Computer Science
University of Bristol, UK
john.cartlidge@bristol.ac.uk

The work presented here was performed with Ilango Sriram at the University of Bristol, UK, and was funded by HP-Labs and EPSRC grant EP/H042644/1 as part of the national Large-Scale Complex IT Systems (LSCITS) initiative headed by Professor Dave Cliff.
Outline

• Background: Cloud Computing
• Problem: Ultra-large scale data centres (DCs) in production with insufficient pre-testing
• Long-Term Research Aim: To create a robust simulation modelling framework for cloud DCs
• Today: Modelling failure resilience
• Demonstrate resilience and efficiency of different redundancy scheduling algorithms
Cloud Computing: “the next step”

The commercial provision of IT has undergone “step” changes every 10 years or so...

1960s: **Mainframes** - physically huge, housed in air-con rooms
Early 70s: **Mini-computers** - more robust, compact, affordable
Late 70s: **PCs** - cheaper & smaller, single-user
1980s: **Communication LANs**: Client-server model first used. Sun’s slogan: “the network *is* the computer”
Mid 90s: Widespread adoption of the **Internet**
Now: **Cloud**: online provision of centralised utility computing
Computing as a Utility

19th Century: Electricity in Manufacturing

• Electricity generation as important to manufacturing as the factory itself, with each factory having its own generator
• Economies of scale by utility providers made local factory-generation uneconomic

Today: Computing in Business and the Home

• IT is a necessity, but no longer offers any particular advantage since hardware and software is ubiquitous and standardized
• IT can be provided remotely “in the cloud”, making in-house data centres uneconomic
Ultra-large “cloud-scale” data centres

• Cloud computing offers the provision of IT resources in every home and business “as a Service”
 – Infrastructure (IaaS), Platform (PaaS), Software (SaaS)
 – Enables companies to focus on what they should be doing (their core business), rather than running data-centres

• Providing cloud services requires ultra-large DCs
 – Tens of thousands of servers, and growing ...

• Unlike HPC, cloud providers use commodity hardware
 – Advantage comes from scale-out (massive parallelisation) not scale-up (increasing power and performance)
“Normal” Failure

“an application running across thousands of machines may need to react to failure conditions on an hourly basis” (Barosso & Hölzle, Google, 2009)

• In a DC with 300,000 servers, each with an average life of 3 years, we expect +10 deaths / hour
• Failures and outages in such large complex systems are normal: not unexpected or rare
• However, for the cloud to work, providers must guarantee availability (often “triple 9”, 99.9%, or more)
• Cloud providers need to build resilience into their systems
Where is the (simulation) model?

- Many mature engineering fields have robust industry-standard simulation frameworks for design and testing
 - E.g., SPICE for integrated circuit design, CFD for automotive
- For cloud-scale DC design no simulation model exists
- DCs are going into service without sufficient pre-testing
- At UoBristol we are attempting to build a set of simulation tools for the design and testing of cloud DCs
- Here, we present a preliminary model of resilience
Redundancy Scheduling for Resilience

• Redundancy can be used to counter-act hardware and software failures
 – Multiple instances running in parallel
• However, redundancy is costly
 – Increased computation and network communication
Data Centre Design

Hierarchical network-tree model of DC. Cloud Services run on Blade servers, which are mounted on Chassis in Racks, arranged in Aisles within a DC
Model Assumptions

• Failure can occur at any level in the hierarchy tree
• Network costs are greater when “higher” in the tree
 – Bandwidth and latency is greater between racks/aisles than between services running on the same server
• Jobs consist of a set of parallelizable tasks
• Fixed DC size with < 100% utilisation
• Tasks are scheduled using 3 simple algorithms:
 – **Random** (distribute tasks randomly across DC)
 – **Pack** (pack all tasks into the smallest region possible)
 – **Cluster** (pack all tasks within a redundancy group together, distribute groups randomly across the DC)
Redundancy Scheduling

Example: 2 jobs, each with 3 parallel tasks, using redundancy 2. Total tasks = 2 * 3 * 2 = 12.
Communication Networks

Tasks communicate with the nearest copy of every other task. Here, all communication is intra-server (on the same physical hardware).

When task 2 fails, communication costs increase from $6C_S$ to $4C_S + 2C_B$. We now have more expensive inter-server communication.
Random Scheduling

Initialisation

Service Fail

Blade Fail

Lots of long-distance (costly) communications, but some resilience to localised failure
Pack Scheduling

Initialisation

Service Fail

Blade Fail

Localised (cheap) communication, but vulnerable to localised hardware failure
Cluster Scheduling

Initialisation

Service Fail

Blade Fail

Mainly localised (cheap) communication, with some resilience to localised failure
Definition: Job Failure

A job fails if all redundant copies of a task fail.
Results: Resilience

- Increase in failure rate -> decrease in resilience
- Increase in tasks per job -> decrease in resilience
- Overall, Cluster is the most resilient algorithm

20,000 servers
Communication Costs of Redundancy

- Random & Pack: costs scale linearly with R
- Cluster: communication costs invariant (R>1)
- Pack most efficient, Random least efficient
Conclusion & Future Work

• Demonstration of how simulation models of cloud-scale DCs can be used to determine the resilience and cost of redundancy scheduling algorithms

• Models will enable cloud providers to tune their schedulers based on expected failure and demand

• **Future work**: To create an open-source, extensible simulation framework for modeling cloud DCs
 • CloudSim: to be open-sourced in 2012
 • Will include Resilience, Pricing, Power Efficiency, Cooling, etc.
Questions?

Contact:
Dr John Cartlidge
john.cartlidge@bristol.ac.uk
http://www.cs.bris.ac.uk/~cszjpc/

Collaborators:
Ilango Sriram, Prof. Dave Cliff
LSCITS: http://lscits.cs.bris.ac.uk/