
Young Algebraists’ Conference

(Lausanne, June 2014)

Topics in Permutation Group Theory

Lectures by

Tim Burness
(University of Bristol, UK)





Contents

1 Introduction 1
1.1 Main themes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Basic notions 3
2.1 Permutation groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Wreath products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Simple groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 The socle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Regular normal subgroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Primitivity 7
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Basic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 The O’Nan-Scott Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Variations on primitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Derangements 20
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4 Order and elusivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5 The polycirculant conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.6 Related problems and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Bases 29
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Bounds for primitive groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Almost simple groups & probabilistic methods . . . . . . . . . . . . . . . . . . . . . 35
5.4 Bases for algebraic groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Exercises 40

7 References 42



1 Introduction

The study of permutation groups is an old subject with a rich history, stretching all the way back
to the origins of group theory in the early 19th century. Galois introduced the notion of a group
in his study of the permutations of roots of polynomial equations (the familiar Galois group of
the polynomial), and groups of substitutions (what we now call permutation groups) were a focus
of interest for much of the 19th century. Of course, the modern notion of a permutation group is
extremely flexible, and they arise naturally throughout mathematics, with important applications
across the sciences.

For instance, given any mathematical object or structure Σ (e.g. vector space, group, graph,
topological space, etc.) based on a set of points Ω (e.g. vectors, group elements, vertices, points,
etc.) then the set Aut(Σ) of automorphisms (or symmetries) of Σ (i.e. the bijective maps f : Ω→ Ω

such that f and f−1 preserve the structure of Σ) is a permutation group on Ω. That is, Aut(Σ)
is a group of bijections from Ω to itself. By Cayley’s Theorem, every group can be viewed as a
permutation group on some set!

1.1 Main themes

There is a vast literature on permutation groups and so we have had to be very selective in choos-
ing the topics for these lectures. In particular, we will focus on finite permutation groups, which
continues to be a very active area of current research. The topics have been chosen to illustrate the
development of the subject, from classical results proved in the 19th century, through to cutting-
edge advances in much more recent times. The topics also highlight some of the applications
of permutation group theory in other areas of mathematics, and they provide an opportunity to
discuss a number of interesting open problems. Let me highlight three main themes:

1. Primitivity. The notion of primitivity is fundamental in permutation group theory. It is best
viewed as a natural irreducibility condition, and in some sense the primitive groups are the
“basic building blocks” of all permutation groups.

2. Impact of CFSG. In the last 30 years, the Classification of Finite Simple Groups (CFSG) has
revolutionised the study of finite permutation groups. We will explain why, and discuss
some of the far-reaching consequences.

3. Applications. Some of the topics we will discuss have interesting connections to other areas
of mathematics, such as combinatorics, representation theory, number theory, graph theory,
etc., and we will highlight these applications.

A rough overview of the five lectures is presented in Table 1.1.

Lectures Overview
I, II Primitivity: Basic properties; O’Nan-Scott Theorem and applications

Variations on the theme of primitivity
III, IV Derangements: Counting; order; elusivity; applications
IV, V Bases: Applications; bounds; probabilistic methods

Bases for algebraic groups (time permitting...)

Table 1.1: Organisation of lectures

1.2 Further reading

There are several standard references for permutation groups:

• P.J. Cameron, Permutation groups, London Math. Soc. Student Texts, vol. 45, CUP, 1999.
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• J.D. Dixon and B. Mortimer, Permutation groups, Springer Graduate Texts in Math., vol. 163,
Springer, 1996.

• D.S. Passman, Permutation groups, Dover Publications, 2012 (reprint of 1968 original).

• H. Wielandt, Finite permutation groups, Academic Press, 1964.

Many more specific references are provided in the bibiliography (see Section 7). There are also
some good notes available online (easily found by Googling). For example:

• J. Bamberg, Permutation Group Theory, RMIT Summer Course notes, 2006.

• J.B. Fawcett, The O’Nan-Scott theorem for finite primitive permutation groups, and finite repre-
sentability, Masters thesis, University of Waterloo, 2009.

There are also some excellent mathematical blogs that frequently discuss permutation groups
(and many other interesting topics!). Here are two good examples:

• Peter Cameron’s Blog: http://cameroncounts.wordpress.com

• SymOmega: http://symomega.wordpress.com
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2 Basic notions

In this section we briefly recall some basic concepts and constructions that we will need later. We
also fix some of the notation we will use throughout these notes.

2.1 Permutation groups

Let G be a group, let Ω be a set and let Sym(Ω) be the group of all permutations of Ω. An action
of G on Ω is a homomorphism ϕ : G→ Sym(Ω), and we say that Ω is a G-set. For x ∈ G, α ∈Ω we
write αx to denote the element α(xϕ) ∈Ω. The image of ϕ , denoted GΩ, is a subgroup of Sym(Ω).
In other words, GΩ is a permutation group on Ω. The degree of GΩ is the cardinality of Ω. We say
that G is faithful (or equivalently, Ω is a faithful G-set) if ker(ϕ) = 1, in which case G∼= GΩ.

For x ∈ G and α ∈Ω we define

α
G = {αx | x ∈ G}

Gα = {x ∈ G | αx = α}
CΩ(x) = {α ∈Ω | αx = α}

supp(x) = {α ∈Ω | αx 6= α}

the orbit of α , stabiliser of α , fixed point set of x, and support of x, respectively. Recall that Gα is
a subgroup of G and we have Gαx = (Gα)

x = x−1Gα x. By the Orbit-Stabiliser theorem, there is a
bijection between αG and the set of cosets of Gα in G. The orbits are the equivalence classes with
respect to the relation∼ on Ω, where α ∼ β if and only if αx = β for some x ∈G, so the set of orbits
form a partition of Ω. Then G is transitive (or equivalently, Ω is a transitive G-set) if there is only
one orbit, namely Ω. Note that if G is transitive, then ker(ϕ) =

⋂
x∈G(Gα)

x, so G is faithful if and
only if Gα is core-free.

We say that G is semiregular if Gα = 1 for all α ∈ Ω, and regular if it is both semiregular and
transitive. In a transitive action, the orbits of Gα on Ω are called suborbits, and the number of such
orbits is called the rank of G. Given a positive integer k, we say that G is k-transitive on Ω if it
acts transitively on the set of all k-tuples of distinct elements of Ω, in terms of the componentwise
action

(α1, . . . ,αk)
x = (αx

1 , . . . ,α
x
k ).

Note that if k > 2 then G is k-transitive on Ω if and only if G is transitive on Ω and Gα is (k− 1)-
transitive on Ω\{α}. In particular, G is 2-transitive if and only if the rank of G is two.

Two G-sets Ω and Γ are isomorphic, denoted Ω∼= Γ, if there exists a bijection ϕ : Ω→ Γ such that
(αx)ϕ = (αϕ)x for all α ∈Ω and x ∈ G. For example, αG ∼= G/Gα (in terms of the natural action of
G on the set of cosets G/Gα ). In particular, if G is transitive then Ω ∼= G/Gα , hence Ω ∼= G if G is
regular, where G acts on itself by right multiplication.

The permutation groups H 6 Sym(Γ) and K 6 Sym(∆) are permutation isomorphic if there exists
a bijection ϕ : Γ→ ∆ and an isomorphism ψ : H→ K such that

(γx)ϕ = (γϕ)xψ

for all γ ∈ Γ and x ∈ H. In other words, H and K are ‘the same’, up to a relabelling of elements.

Examples 2.1.

(i) The standard action of the symmetric group G = Sn on {1, . . . ,n} is faithful, n-transitive and
Gα = Sn−1. Similarly, the standard action of the alternating group An is (n−2)-transitive (but
not (n−1)-transitive).

(ii) The standard action of the dihedral group D2n (with n> 3) on the set of n vertices of a regular
n-gon is faithful and transitive, but it is only 2-transitive if n = 3.

(iii) Fix an integer 1 < k < m. Then G = Sm acts faithfully and transitively on the set of k-element
subsets of {1, . . . ,m}, where the action is defined by Γx = {γx | γ ∈ Γ}. Here GΓ = Sk× Sm−k
and the degree of G is

(m
k

)
. The actions of G on k-sets and (m− k)-sets are isomorphic. If

k 6 m/2 and Γ is a fixed k-set, then the suborbits of GΓ are

Φi = {Λ : |Λ∩Γ|= i}, i = 0, . . . ,k.
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Therefore, G has rank k+1.

(iv) The general linear group GLd(q) acts faithfully and intransitively on V = (Fq)
d ; the orbits

are {0} and {v ∈ V | v 6= 0}. The natural action on vectors induces an action on the set of
1-dimensional subspaces of V , which is 2-transitive, but only faithful if q = 2; the kernel is
the centre Z of GLd(q) (that is, the scalar matrices). The corresponding (faithful) action of
PGLd(q) = GLd(q)/Z is 2-transitive; this is called the standard action of PGLd(q).

(v) Let G be a group and consider the natural action of G on the coset spaces G/H and G/K,
where H,K are subgroups of G. These two G-sets are isomorphic if and only if H and K are
conjugate.

2.2 Wreath products

Wreath products are fundamental constructions in permutation group theory. Let H 6 Sym(Γ)
and K 6 Sym(∆) be permutation groups, where |Γ|, |∆| > 2 and ∆ = {1, . . . ,n}. Let Hn denote the
direct product of n copies of H. Then K acts naturally on Hn by permuting the n factors; more
precisely, k ∈ K acts on (h1, . . . ,hn) by moving hi to the ik-th coordinate, so

(h1, . . . ,hn)
k = (h1k−1 , . . . ,hnk−1 ).

The wreath product of H and K, denoted by H oK, is the corresponding semidirect product HnK, so
the group operation is defined as follows:

(a1, . . . ,an)k · (b1, . . . ,bn)`= (a1, . . . ,an)(b1, . . . ,bn)
k−1

k`

= (a1b1k , . . . ,anbnk)k`

The direct product Hn is called the base group of H oK, and K is the top group.
Set G = H oK. There is a faithful action of G on Ω = Γ×∆ defined by

(γ, i)(h1,...,hn)k = (γhi , ik). (2.1)

We call this the standard action of G. Note that G is transitive if and only if H and K are both
transitive. Also note that the partition {Γ×{i} | 16 i6 n} of Ω is G-invariant.

There is also a natural faithful action of G on the Cartesian product Ω = Γn defined by

(γ1, . . . ,γn)
(h1,...,hn)k =

((
γ1k−1

)h
1k−1

, . . . ,
(

γ
nk−1

)h
nk−1
)
. (2.2)

This is called the product action of G. Note that this is simply a combination of the coordinatewise
action of Hn on Ω, together with the natural permuting action of K on coordinates. To check that
this is indeed an action, let

x = (a1, . . . ,an)k−1, y = (b1, . . . ,bn)`
−1, α = (γ1, . . . ,γn) ∈Ω.

Now xy = (a1b1k−1 , . . . ,anb
nk−1 )(`k)−1 and thus

α
xy =

(
(γ1`k)

a1`k b
1(`k)k

−1 , . . . ,(γn`k)
an`k b

n(`k)k
−1
)
=
(
(γ1`k)

a1`k b1` , . . . ,(γn`k)
an`k bn`

)
and

(αx)y = ((γ1k)
a1k , . . . ,(γnk)

ank )
y
=
(
(γ1`k)

a1`k b1` , . . . ,(γn`k)
an`k bn`

)
as required.

For example, consider the wreath product G = S3 oS2, which is a group of order (3!)2(2!) = 72.
The standard action embeds G in S6; up to conjugacy, we may view G as the stabiliser in S6 of the
partition {1,2,3}∪{4,5,6}, where the base group, S3×S3, fixes both parts of the partition, and the
top group S2 swaps the two parts. Similarly, the product action embeds G in S9.
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2.3 Simple groups

Let’s start by recalling the Classification theorem.

Theorem 2.2 (The Classification of Finite Simple Groups (CFSG), 1980). Let T be a finite simple
group. Then T is isomorphic to one of the following:

(i) Zp for a prime p;

(ii) An for an integer n> 5;

(iii) A simple group of Lie type (either classical or exceptional);

(iv) One of 26 sporadic simple groups.

Let T be a nonabelian finite simple group with automorphism group Aut(T ). Let ϕ : T →
Aut(T ) be the map sending t ∈ T to the inner automorphism ϕt induced by conjugation by t. Since
Z(T ) = 1, ϕ is a monomorphism, so we may identify T with im(ϕ) = Inn(T ).

A finite group G is almost simple if there exists a nonabelian finite simple group T such that

T 6 G6 Aut(T ).

We say that T is the socle of G. For example, Sn is almost simple if n > 5, and PGLn(q) is almost
simple for all n> 2 and prime-powers q (unless (n,q) = (2,2) or (2,3)).

We define Out(T ) = Aut(T )/T . The structure of Out(T ) is well understood; indeed, the follow-
ing result is an important corollary of Theorem 2.2 (no direct proof is known):

Theorem 2.3 (Schreier Conjecture). Let T be a nonabelian finite simple group. Then Out(T ) is soluble.

For example, if T = An then Out(T ) ∼= Z2 × Z2 if n = 6, otherwise Out(T ) ∼= Z2. Similarly, if
T = PSLn(q) and q = p f (with p prime), then Out(T ) ∼= Z(n,q−1) o (Z f × Za), where a = 2 if n > 3,
otherwise a = 1.

The next result records two more additional facts that will be useful later:

Proposition 2.4. Let G be an almost simple group with socle T . The following hold:

(i) CG(T ) = 1;

(ii) If k ∈ N, then Aut(T k)∼= Aut(T ) oSk.

Proof. First consider (i). It suffices to show that CAut(T )(Inn(T )) = 1. Since Z(T ) = 1, the map
ϕ : T → Inn(T ), t 7→ ϕt , is an isomorphism, where xϕt = t−1xt for all x ∈ T . Let ψ ∈CAut(T )(Inn(T ))
and fix s, t ∈ T . Then

t−1st = sϕt = s(ψ−1
ϕtψ) = sϕtψ = (tψ)−1s(tψ)

and thus (tψ)t−1 ∈ Z(T ) = 1, so tψ = t for all t and thus ψ = 1.
For part (ii), see [38, Exercise 4.3.9] (or [39, Proposition 1.6.1]).

It is difficult to overestimate the impact of CFSG on the study of finite permutation groups –
this will be a common theme throughout these notes. In order to fully exploit the classification,
one often needs detailed information on the structure of the simple groups themselves, in terms
of subgroups, representations and conjugacy classes of elements, for example.

The problem of determining the maximal subgroups of simple groups dates back to Galois’
letter to Chevalier on the eve of his fatal duel in 1832, and it continues to be a major area of
research. Many important advances have been made post-CFSG, and there is a vast literature
in this area (see [12, 35, 63], for example). For example, for simple groups of Lie type there are
very powerful reduction theorems due to Aschbacher, Liebeck, Seitz and others that play a major
role in the study of permutation groups. The connection is transparent: the transitive actions of a
simple group G correspond to the conjugacy classes of subgroups of G, and we will see that the
primitive actions correspond to conjugacy classes of maximal subgroups. Moreover, many general
questions concerning finite permutation groups can be reduced to the simple (or almost simple)
case, using powerful tools such as the O’Nan-Scott Theorem, as we shall see in Sections 3 – 5.
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2.4 The socle

Let G be a finite group. The subgroup of G generated by the minimal normal subgroups of G is
called the socle of G, denoted Soc(G) (recall that a nontrivial normal subgroup N of G is minimal if
it does not properly contain a nontrivial normal subgroup of G).

Lemma 2.5. Let G be a finite group.

(i) Any two distinct minimal normal subgroups of G commute. In particular, Soc(G) is a direct product
of distinct minimal normal subgroups of G.

(ii) Every minimal normal subgroup of G is a direct product of isomorphic simple groups.

Proof.

(i) If N1,N2 are distinct minimal normal subgroups of G, then [N1,N2]6N1∩N2 P G, so [N1,N2] =
N1∩N2 = 1 by minimality.

(ii) Let N be a minimal normal subgroup of G. By minimality, N is characteristically simple (it
has no proper nontrivial characteristic subgroup, since any characteristic subgroup of N is
normal in G). Let T be a minimal normal subgroup of N and let ϕ ∈ Aut(N). Then T ϕ is also
a minimal normal subgroup of N, so part (i) implies that either T ϕ = T , or T ∩T ϕ = 1 and
thus T T ϕ = T ×T ϕ is a direct product. Now 〈T ϕ | ϕ ∈ Aut(N)〉 is a nontrivial characteristic
subgroup of N, so it must be equal to N. By induction, N is the direct product of a finite
number of T ϕ . In particular, if 1 6= J P T then J P N, so the minimality of T implies that
J = T , whence T is simple.

2.5 Regular normal subgroups

Let G 6 Sym(Ω) be a permutation group with a regular normal subgroup N and point stabiliser
H = Gα . Then G = HN is a semidirect product and the action of G on Ω is isomorphic to the action
of G on N given by

ahn = (h−1ah)n

for all a,n ∈ N, h ∈ H. (If we write G = NH instead, then the action is given by anh = h−1(an)h.)
Indeed, the map ψ : N→Ω given by nψ = αn is a bijection, and for x = hn ∈ G we have

(ax)ψ = (h−1ah)nψ = α
h−1ahn = α

ahn = (αa)hn = (aψ)x

as required. With respect to this action of G on N, note that H =G1 (where 1 is the identity element
in N). Also note that CH(N) = 1 since the action of G on Ω (and thus the action of G on N) is faithful.

Conversely, suppose H and N are groups, and H acts on N by automorphisms, i.e. there is a
homomorphism ϕ : H → Aut(N). Let G = H nϕ N be the corresponding semidirect product and
consider the action of G on N defined by

ahn = ahϕ n

where ahϕ denotes the image of a ∈ N under the automorphism hϕ ∈ Aut(N). Note that this really
is an action:

ah1n1·h2n2 = ah1h2·n
h2ϕ

1 n2 = a(h1h2)ϕ nh2ϕ

1 n2

and
(ah1n1)h2n2 = (ah1ϕ n1)

h2n2 = (ah1ϕ n1)
h2ϕ n2 = a(h1h2)ϕ nh2ϕ

1 n2.

This action of G on N is faithful, H = G1 and N is a regular normal subgroup.

Example 2.6. As an important special case of this construction, let V be a finite dimensional vector
space over Fq, and let H be a subgroup of GL(V ). Then the corresponding semidirect product
G = HV acts faithfully on V by affine transformations

uhv = uh+ v

for all u,v ∈ V and h ∈ H. Moreover, V is a regular normal subgroup and H = G0 is the stabiliser
of the zero vector. We say that G is an affine permutation group.
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3 Primitivity

3.1 Introduction

Let G be a permutation group on a set Ω, with orbits Ωi, i∈ I. Then G induces a transitive permuta-
tion group GΩi on Ωi; these are called the transitive constituents of G. In some sense, G is built from
its transitive constituents; indeed, G is a subdirect product of the GΩi (that is, the corresponding
projection maps G→ GΩi are surjective). For example, if G = {1,(1,2)(3,4)} and Ω = {1,2,3,4}
then the orbits are Ω1 = {1,2}, Ω2 = {3,4}, and G is a proper subdirect product of the transitive
constituents GΩ1 = {1,(1,2)}, GΩ2 = {1,(3,4)}.

In turn, the transitive constituents themselves may be built (in some sense) from smaller per-
mutation groups. Here we need the notion of primitivity, which is a natural “irreducibility” con-
dition that leads us to the basic building blocks of all permutation groups; the primitive groups.
Moreover, we will see that the abstract structure of a primitive group is rather restricted (note
that transitivity alone imposes no restrictions whatsoever on the abstract structure of G).

Definition 3.1. Let G 6 Sym(Ω) be a transitive permutation group. A nonempty subset Γ of Ω is
a block if, for all x ∈G, either Γx = Γ or Γ∩Γx = /0. Each translate Γx is also a block, and we say that
{Γx | x ∈G} is a block system (this is a partition of Ω). The block systems {Ω} and {{α} | α ∈Ω} are
trivial, and any other block system is nontrivial.

Note that all blocks in a block system have the same cardinality. In particular, if the degree of
G is a prime number, then the only block systems are trivial. Two closely related notions:

• A partition Ω = Γ1 ∪ ·· · ∪Γk is G-invariant if, for all i and all x ∈ G, (Γi)
x ∈ {Γ1, . . . ,Γk}. The

trivial partitions are Ω and
⋃

α∈Ω α .

• A G-congruence on Ω is a G-invariant equivalence relation, i.e. α ∼ β if and only if αx ∼ β x

for all x ∈ G. The universal relation and equality are the trivial congruences.

It is easy to see that

G has a nontrivial block system ⇐⇒ Ω admits a nontrivial G-invariant partition
⇐⇒ Ω admits a nontrivial G-congruence

Definition 3.2. A transitive group G 6 Sym(Ω) is imprimitive if it has a nontrivial block system,
otherwise G is primitive.

Equivalent definitions can be given in terms of G-invariant partitions and G-congruences, and
it turns out that there are several other equivalent definitions for primitivity (see Lemma 3.4, for
example).

Examples 3.3.

(i) The standard actions of Sn (n> 2) and An (n> 3) are primitive.

(ii) Consider the standard action of G=D12 on the set of vertices Ω= {1,2,3,4,5,6} of a hexagon
(numbered consecutively). Then G has two nontrivial block systems:

{{1,4},{2,5},{3,6}}, {{1,3,5},{2,4,6}}.

In fact, it is easy to see that the standard action of D2n is imprimitive if n is composite.

(iii) The symmetry group of a cube acts imprimitively on the set of vertices of the cube; the four
pairs of diagonally opposite vertices form a block system.

(iv) Any transitive group of prime degree is primitive, e.g. 〈(1,2,3,4,5)〉 ∼= Z5 is a primitive
subgroup of S5.

(v) The action of Sm on the set of k-element subsets of {1, . . . ,m} is primitive for all 1 < k < m,
k 6= m/2 (if k = m/2 then {{1, . . . ,m/2},{m/2+1, . . . ,m}} is a block).
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(vi) Wreath products are an important source of examples. As in Section 2.2, let H 6 Sym(Γ) and
K 6 Sym(∆) be transitive permutation groups, where |Γ|, |∆| > 2 and ∆ = {1, . . . ,n}, and set
G = H oK. The standard action of G on Ω = Γ×∆ (see (2.1)) is imprimitive since

{Γ×{i} | 16 i6 n}

is a block system. However, one can show that the product action of G on Ω = Γn (see (2.2))
is primitive if and only if H is primitive and non-regular on Γ (see [38, Lemma 2.7A]). For
example, both conditions are necessary:

– If Σ⊂ Γ is a nontrivial block for H, then Σn ⊂Ω is a nontrivial block for G.

– If H is regular then {(γ, . . . ,γ) | γ ∈ Γ} ⊂Ω is a block for G.

Note that if G6 Sym(Ω) is imprimitive and {Γ1, . . . ,Γk} is a nontrivial block system, then G
is isomorphic to a subgroup of Sym(Γ1) oSk.

Suppose G 6 Sym(Ω) is imprimitive. A nontrivial block system ∆ = {Γx | x ∈ G} is maximal if
the induced group G∆ 6 Sym(∆) is primitive. For example, the two block systems in Examples
3.3(ii) are maximal. For a non-example, if we take a natural copy of G = D12 o S4 in S24 then ∆ =
{{1,4}x | x ∈ G} is a non-maximal block system (here G∆ = S3 oS4 < S12 is imprimitive).

Let ∆1 = {Γx | x ∈ G} be a maximal block system and set H = (GΓ)
Γ (the group induced on

Γ by the setwise stabiliser GΓ of Γ in G) and K1 = G∆1 . Note that H 6 Sym(Γ) is transitive and
K1 6 Sym(∆1) is primitive. There is a bijection between Ω and Γ×∆1 that embeds G into H oK1
(see [38, Theorem 2.6A]). If H is imprimitive then we can repeat the process, taking a maximal
block system ∆2 = {(Γ1)

x | x ∈ H} with respect to the action of H on Γ. Then H is isomorphic to a
subgroup of L oK2, where L = (HΓ1)

Γ1 6 Sym(Γ1) is transitive and K2 = H∆2 6 Sym(∆2) is primitive,
so we can embed G in (L oK2) oK1. If Ω is finite then this process eventually terminates, at which
point G is isomorphic to a subgroup of an iterated wreath product

((. . .(Kr oKr−1) o . . .) oK2) oK1 6 Sym(((. . .(∆r×∆r−1)× . . .)×∆2)×∆1)

of primitive groups Ki 6 Sym(∆i), 16 i6 r. Here the Ki are the corresponding primitive components
of G (unlike transitive constituents, these are not uniquely determined by G).

3.2 Basic properties

Lemma 3.4. Let G6 Sym(Ω) be a transitive permutation group. Then G is primitive if and only if Gα is
a maximal subgroup of G.

Proof. This is Exercise 12.

Lemma 3.5. Let G6 Sym(Ω) be a primitive permutation group and let N be a nontrivial normal subgroup
of G. Then N is transitive.

Proof. The N-orbits on Ω form a block system for G, since

(αN)x = α
Nx = α

xN = (αx)N

for all α ∈Ω and x ∈ G.

Lemma 3.6. Let G6 Sym(Ω) be a 2-transitive permutation group. Then G is primitive.

Proof. Suppose G is imprimitive, with a nontrivial block system {Γ1,Γ2, . . .}. Choose distinct
points α,β ∈Γ1 and γ ∈Γ2. By 2-transitivity, there exists an element x∈G such that (α,β )x =(α,γ).
But this implies that /0 6= Γ1∩Γx

1 6= Γ1, a contradiction.

Note that the converse to Lemma 3.6 is false. For example, take the above example Z5 < S5,
which is primitive but not 2-transitive (it is easy to construct other examples; for instance, Remark
3.11 describes when a primitive affine group is 2-transitive). Therefore,

2-transitive =⇒ primitive =⇒ transitive
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but none of the reverse implications hold. In Section 3.5 we will consider several variations on
primitivity (2-transitivity is one of many).

Let G be a finite group. Recall that the socle of G, denoted Soc(G), is the subgroup of G gen-
erated by its minimal normal subgroups (see Section 2.4). It turns out that the socle of a finite
primitive permutation group is rather restricted.

Lemma 3.7. Let G 6 Sym(Ω) be a finite primitive permutation group and let N be a nontrivial normal
subgroup of G. If CG(N) is nontrivial, then CG(N) is regular.

Proof. By Lemma 3.5, both N and CG(N) are transitive (note that CG(N) is a normal subgroup of
G). Suppose x ∈ CG(N)α , so α ∈ CΩ(x). Then N preserves CΩ(x) (if α ∈ CΩ(x) and n ∈ N, then
(αn)x = (αx)n = αn), so the transitivity of N implies that CΩ(x) = Ω and thus x = 1. Therefore
CG(N)α = 1 and CG(N) is regular.

Theorem 3.8. Let G6 Sym(Ω) be a finite primitive permutation group. Then one of the following holds:

(i) G has a unique minimal normal subgroup N, where N is regular and elementary abelian.

(ii) G has a unique minimal normal subgroup N, and CG(N) = 1.

(iii) G has exactly two minimal normal subgroups N and CG(N), which are isomorphic, nonabelian and
regular.

Proof. First we claim that G has at most two minimal normal subgroups. If N1 and N2 are distinct
minimal normal subgroups of G, then Lemmas 2.5 and 3.7 imply that N1 is transitive, N1 6CG(N2)
and CG(N2) is regular. Therefore, N1 is also regular, so |N1| = |CG(N2)| and thus N1 = CG(N2).
Similarly, N2 =CG(N1). This justifies the claim.

Let N1 and N2 be minimal normal subgroups of G. If CG(N1) = 1 then (ii) holds (by Lemma
2.5(i), if N1 6= N2 then N2 6CG(N1), a contradiction). Now assume CG(N1) 6= 1.

Suppose N1 6= N2. Then N1 = CG(N2) and N2 = CG(N1) as above, so N1 and N2 are regular and
nonabelian. Fix α ∈ Ω and set L = (N1N2)α . Then L∩N1 = L∩N2 = 1 since N1 and N2 are regular,
so LN1 = LN2 = N1N2 and thus

L∼= L/(L∩N1)∼= LN1/N1 = N1N2/N1 ∼= N2.

Similarly, L∼= N1. Therefore (iii) holds.
Finally, suppose CG(N1) 6= 1 and N1 is the unique minimal normal subgroup of G. Then CG(N1)

is a regular normal subgroup of G (by Lemma 3.7) and thus CG(N1) is a minimal normal subgroup
(if CG(N1) contains a nontrivial subgroup K normal in G, then K is also regular, so K = CG(N1)).
Therefore, N1 =CG(N1) so N1 is regular and abelian. By Lemma 2.5(ii), it follows that N1 is elemen-
tary abelian.

Corollary 3.9. If G is a finite primitive group, then Soc(G)∼= T k for some simple group T .

3.3 The O’Nan-Scott Theorem

We now turn to one of the most important theorems in permutation group theory. The O’Nan-
Scott Theorem is a very powerful tool for studying finite primitive permutation groups, describing
their structure and action in terms of the socle of the group. In many situations, this theorem can
be used to reduce a general problem to a much more specific problem concerning almost simple
groups, at which point one can appeal to CFSG and the vast literature on simple groups and their
subgroups, conjugacy classes and representations. We will see several examples of this sort of
reduction.

The theorem was stated independently by O’Nan and Scott in the preliminary proceedings of
the Santa Cruz Conference on Finite Groups in 1979, though only Scott’s version made it into the
final Proceedings [81]. Shortly afterwards, an error in the statement was corrected by Aschbacher.
In [66], Liebeck, Praeger and Saxl give a self-contained proof, and Fawcett’s thesis [39] provides
a very detailed and readable account of the proof. In order to state the theorem, we need to
introduce five families of primitive permutation groups (see Table 3.1).
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Description
I Almost simple
II Affine-type
III Diagonal-type
IV Product-type
V Twisted wreath products

Table 3.1: The five families of primitive groups

I. Almost simple. Recall that a permutation group G6 Sym(Ω) is almost simple if Soc(G) = T is a
nonabelian simple group, in which case

T 6 G6 Aut(T ).

Also recall that if G is transitive with point stabiliser H, then the action of G on Ω is isomorphic
to the natural action of G on the set of cosets G/H. Moreover, G is primitive if and only if H is a
maximal subgroup of G (by Lemma 3.4). Note that H is core-free, so it does not contain T . We also
note the fact that T is non-regular. (The latter fact is not obvious – the proof requires the Schreier
Conjecture; see [39, Proposition 2.4.2] for the details.)

II. Affine-type. Let p be a prime and let V = (Fp)
d be a d-dimensional vector space over Fp (which

we will view as an additive group). Let AGL(V ) = AGLd(p) be the group of affine transformations
of V , which are of the form

u 7→ ux+ v

for u,v ∈ V and x ∈ GL(V ). This action is faithful, so AGL(V ) is a permutation group on V . If we
identify GL(V ) with the stabiliser of the zero vector, and V with the subgroup of translations, then
V is a regular normal subgroup and AGL(V ) = GL(V )nV .

A permutation group G6 Sym(V ) is of affine-type if

V 6 G6 AGL(V ).

Here V is a regular normal subgroup of G (so G is transitive), G0 6 GL(V ) is linear (the stabiliser
of the zero vector in G) and G = G0 nV .

Proposition 3.10. Let G6 Sym(V ) be an affine-type group.

(i) G is primitive if and only if G0 6 GL(V ) is irreducible.

(ii) If G is primitive, then V is the unique minimal normal subgroup of G. In particular, Soc(G) =V is
elementary abelian.

Proof.

(i) Suppose G is imprimitive. Fix a nontrivial block system and let U ⊂ V be the block con-
taining the zero vector. If v ∈U then v ∈U ∩ (U + v) = U ∩Uv, so U = U + v and thus U is a
proper nonzero subspace of V (since the underlying field is Fp, we just need to check closure
under addition). Since G0 fixes the zero vector, it follows that U is G0-invariant and thus G0
is reducible.

Conversely, suppose U is a proper nonzero G0-invariant subspace of V . Let g= xv∈G, where
x ∈ G0 and v ∈V . Then

Ug =Ux+ v =U + v

and thus Ug is a coset of U in V . Therefore, either Ug =U or Ug∩U = /0, so U is a nontrivial
block and thus G is imprimitive.
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(ii) Suppose G is primitive. By Lemma 3.7, CG(V ) is regular and thus CG(V ) = V (we have
V 6 CG(V ) since V is abelian). Let N be a minimal normal subgroup of G. If N ∩V = 1
then [N,V ] = 1 and thus N 6 CG(V ) = V , which is a contradiction. Therefore, N ∩V 6= 1, so
N ∩V = N by the minimality of N, whence N 6V . Now N is transitive and the regularity of
V implies that N is also regular, so |N|= |V | and thus N =V .

Remark 3.11. Recall that a transitive group G 6 Sym(Ω) is 2-transitive if and only if Gα acts
transitively on Ω \ {α}. In particular, an affine group G 6 AGL(V ) is 2-transitive if and only if
G0 6 GL(V ) acts transitively on the set of non-zero vectors of V (of course, this condition implies
that G0 is irreducible, but it is much stronger). There is a complete classification of the linear
groups with this transitivity property; this is a theorem of Hering [56] (also see [65, Appendix 1]).

III. Diagonal-type. Let k> 2 be an integer, let T be a nonabelian finite simple group and consider
the natural action of G = T k on the cosets of the diagonal subgroup H = {(t, . . . , t) | t ∈ T}. Clearly,
this action is faithful and transitive. Moreover, if k = 2 then H is a maximal subgroup of G (see
Exercise 11), so in this case G is a primitive diagonal-type group. We can build larger diagonal-
type groups by including additional automorphisms of T k (recall that Aut(T k) = Aut(T ) o Sk, see
Proposition 2.4(ii)).

The formal set-up is as follows. For a ∈ Aut(T ), let a denote the coset Inn(T )a ∈ Out(T ). Define

W = {(a1, . . . ,ak)π ∈ Aut(T ) oSk | a1 = ai for all i}6 Aut(T ) oSk

D = {(a, . . . ,a)π ∈ Aut(T ) oSk} ∼= Aut(T )×Sk

Ω =W/D

A =W ∩Aut(T )k

M = Inn(T )k ∼= T k

(3.1)

Note that W = Ao Sk ∼= T k.(Out(T )× Sk) (a possibly nonsplit extension) and |Ω| = |T |k−1. We can
consider the natural transitive action of W on Ω:

(D(a1, . . . ,ak)π)
(b1,...,bk)σ = D(a1, . . . ,ak)π · (b1, . . . ,bk)σ = D(a1b1π , . . . ,akbkπ )πσ (3.2)

Lemma 3.12. In terms of the above notation, the following hold:

(i) M is the unique minimal normal subgroup of W , so Soc(W ) = M ∼= T k.

(ii) The natural action of W on Ω is faithful.

Sketch proof.

(i) Write M = T1×·· ·×Tk, where

Ti = {(1, . . . ,1,ai,1, . . . ,1) | ai ∈ Inn(T )}<W.

If g = (a1, . . . ,ak)π ∈W then T g
i = Tiπ , so W acts transitively on {T1, . . . ,Tk} by conjugation. Let

L be a proper nontrivial normal subgroup of W that is contained in M. Then L = ∏i∈I Ti for
some nonempty subset I of {1, . . . ,k}, and thus the transitivity of W implies that L = M. Fi-
nally, to see that M is unique, suppose g = (a1, . . . ,ak)π ∈CW (M). Then g ∈

⋂
i CW (Ti), so Tiπ =

T g
i = Ti for all i and thus π = 1. Therefore, aai = a for all a ∈ Inn(T ), so ai ∈CAut(T )(Inn(T )) = 1

(see Proposition 2.4(i)) for all i. Hence g = 1, CW (M) = 1 and thus M is unique (by Lemma
2.5(i)).

(ii) Let α =D∈Ω, so Wα =D. We will show that Wα is core-free. Since M�W we have MWα 6W .
If g = (a1, . . . ,ak)π ∈W then aia−1

1 ∈ Inn(T ) for all i, so

g = (a1a−1
1 , . . . ,aka−1

1 ) · (a1, . . . ,ak)π ∈MWα

and thus W = MWα . Therefore, M is transitive on Ω. Suppose U is a nontrivial normal
subgroup of W contained in Wα . By (i), M6U so M6Wα and thus M =Mα , which contradicts
the transitivity of M. Therefore Wα is core-free, whence the action of W on Ω is faithful.

11



A permutation group G6 Sym(Ω) is of diagonal-type if M 6 G6W , i.e.

T k 6 G6 T k.(Out(T )×Sk).

Note that G is transitive since it contains the transitive subgroup M. Let

PG = {π ∈ Sk | (a1, . . . ,ak)π ∈ G for some (a1, . . . ,ak) ∈ A}6 Sk.

Note that PG is the subgroup of Sk induced via the conjugation action of G on the k factors of
Soc(G) = M = Inn(T )k; we call it the top group of G. Many properties of G are controlled by PG,
including primitivity.

Proposition 3.13. Let G 6 Sym(Ω) be a diagonal-type group, so M 6 G 6W . Let PG 6 Sk be the corre-
sponding top group. Then G is primitive if and only if PG is primitive, or k = 2 and PG = 1.

Proof. See [38, Theorem 4.5A].

For example, there are precisely 5 diagonal-type primitive groups of degree 60, corresponding
to the 5 subgroups of Out(A5)×S2 ∼= Z2×Z2, e.g. A5×A5 and A5 oS2.

IV. Product-type. These groups arise as “blow-ups” of almost simple or diagonal-type primitive
groups. Let H 6 Sym(Γ) be a primitive group of type I (almost simple) or III (diagonal). Let k > 2
be an integer and consider the wreath product W = H o Sk. Recall from Section 2.2 that W has a
natural product action on the Cartesian product Ω = Γk, given by

(γ1, . . . ,γk)
(h1,...,hk)p−1

= (γ
h1p
1p , . . . ,γ

hkp
kp ).

Let T = Soc(H) and B = Soc(W ), so B = T k. Note that W acts faithfully on Ω.
A permutation group G6 Sym(Ω) is of product-type if B6 G6W . Let

PG = {π ∈ Sk | (h1, . . . ,hk)π ∈ G for some (h1, . . . ,hk) ∈ Hk}6 Sk

be the corresponding top group of G (as before, PG is the group of permutations induced via the
conjugation action of G on the k factors of Soc(G) = T k). Note that Soc(G) = T k 6 G6 H oPG. The
condition for primitivity is as follows:

Proposition 3.14. Let G6 Sym(Ω) be a product-type group, so B6 G6W . Let PG be the corresponding
top group. Then G is primitive if and only if PG is transitive.

Proof. Since H is non-regular, this follows immediately from [38, Lemma 2.7A].

V. Twisted wreath products. These groups are a bit more difficult to describe (see [38, pp.133–
137] for more details). The basic ingredients are as follows. Let k > 2 be an integer and let P6 Sk
be a transitive subgroup with point stabiliser Q. Let T be a nonabelian simple group and suppose
ϕ : Q→ Aut(T ) is a homomorphism with Inn(T )6 im(ϕ). Define

B = { f : P→ T | f (pq) = f (p)ϕ(q) for all p ∈ P, q ∈ Q}.

Then B is a group under pointwise multiplication, and B∼= T k. Now P acts on B via f p(x) = f (px)
(p,x ∈ P) and we define G = BoP to be the corresponding semidirect product; this is the twisted
wreath product T oϕ P (the original construction is due to B.H. Neumann). Here B is the unique
minimal normal subgroup of G.

Let Ω = G/P and α = P ∈ Ω. Then G acts transitively on Ω and Gα = P is core-free (since B is
the unique minimal normal subgroup of G, and B∩P = 1), so G acts faithfully on Ω. Note that
|Ω|= |B|= |T |k and Soc(G) =B is regular. The primitivity of G depends on some quite complicated
conditions on P. In terms of degree, the smallest primitive group of this type arises when T = A5
and k = 6, in which case |Ω|= 606.

These groups were erroneously excluded in the original version of the O’Nan-Scott Theorem;
their existence was pointed out later by Aschbacher.

We are now ready to state the O’Nan-Scott Theorem.
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Theorem 3.15 (O’Nan & Scott, 1979). Any finite primitive permutation group is permutation isomorphic
to one of the types I, II, III, IV or V described above.

Some comments on the proof. Let G6 Sym(Ω) be a finite primitive permutation group, with socle M
and point stabiliser H = Gα . Let n = |Ω|.

Case 1. M is abelian.

By Theorem 3.8, M is an elementary abelian p-group for some prime p, say |M| = pd , and M
is regular. As noted in Section 2.5, G = HM is a semidirect product, and the action of G on Ω is
isomorphic to the action of G on M given by ahm = (h−1ah)m. Let V = (Fp)

d (viewed as an additive
group), let θ : M→V be an isomorphism, and define a map

ψ : G → GL(V )nV = AGL(V )
hm 7→ (θ−1φhθ)mθ

Here φh : M→M is the map aφh = h−1ah, and it is easy to check that θ−1φhθ ∈ GL(V ). Moreover,
ψ is a monomorphism and V 6 Gψ 6 AGL(V ). Finally, one checks (using Exercise 9, for example)
that the action of G on M is permutation isomorphic to the action of Gψ on V , so G is an affine-type
group.

Case 2. M is nonabelian.

By Corollary 3.9, M = T1×·· ·×Tk ∼= T k for some integer k > 2 and nonabelian simple group T .
If k = 1 then G is almost simple, so let us assume k > 2. Let T = {T1, . . . ,Tk} and note that G acts
on T by conjugation, inducing a permutation group P6 Sk. Let πi : M→ Ti be the i-th projection
map, 16 i6 k. There are now two subcases to consider.

Case 2.1. πi(Mα) = Ti for some i.

First one uses the primitivity of G to show that π j(Mα) = Tj for all j, so Mα is a subdirect
product of M. More precisely,

Mα = D1×·· ·×D`
∼= T `,

where Di ∼= T is a diagonal subgroup of ∏ j∈Ii Tj, and I1 ∪ ·· · ∪ I` is a partition of {1, . . . ,k}. Set
m = |I1|. Now Gα acts transitively on {D1, . . . ,D`}, so k = `m. If `= 1 then one shows that there is
no nontrivial P-invariant partition of T and thus either k > 3 and P is primitive, or k = 2. With
further work, one goes on to show that G is of diagonal-type. On the other hand, if ` > 1 then one
can show that G is a product-type group (the blow-up of a diagonal-type group).

Case 2.2. πi(Mα)< Ti for all i.

Let N = NG(T1). For any subgroup L6 N, let L∗ be the group of automorphisms of T1 induced
by L by conjugation. There are two possibilities to consider, which lead to the final two types of
primitive groups in the O’Nan-Scott Theorem.

Suppose T ∗1 6 (Nα)
∗. We define a homomorphism

ϕ : Nα → Aut(T1)
n 7→ (t 7→ n−1tn)

Then Mα = 1 and im(ϕ) = (Nα)
∗ > T ∗1 = Inn(T1), and with some work one shows that G is a twisted

wreath product. This part of the argument requires the Schreier Conjecture (see Theorem 2.3),
which in turn relies on CFSG.

Finally, if T ∗1 66 (Nα)
∗ then one can show that G is a product-type group (the blow-up of an

almost simple group). Again, this argument requires the Schreier Conjecture.

Remark 3.16. A few additional comments on the O’Nan-Scott Theorem:

(i) The five families I – V are pairwise disjoint;

(ii) Every soluble primitive group is affine;
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Upper bound on |G| Comments
Bochert, 1889 n(n−1) · · ·(n−bn/2c+1)6 nn/2 See [10] and Theorem 5.6
Wielandt, 1969 cn G not 2-transitive; c constant
Praeger & Saxl, 1980 4n See [79]
Babai, 1981 exp(4

√
n log2 n) See [3, 4]

n� 0 if G is 2-transitive

Table 3.2: Upper bounds on the orders of primitive groups, pre-CFSG

(iii) In the product-type construction (type IV above), we assume that H 6 Sym(Γ) is either al-
most simple or diagonal-type. Of course, we could apply the same construction to any
primitive group, but we do not get anything new. For example, the “blow-up” of an affine
group has a regular abelian socle, so it is also an affine-type group.

3.4 Applications

Let us now consider some far-reaching applications of the O’Nan-Scott Theorem. One of our main
aims is to show that primitive groups are both rare and small.

3.4.1 The order of a primitive group

Estimating the order of a finite primitive permutation group in terms of its degree was one of the
central problems of 19th century group theory. This problem is closely related to the 1860 Grand
Prix problem of the Paris Academy (the prize was not awarded, although Jordan was one of the
contestants).

Let G be a primitive permutation group of degree n, and let us assume G 6= An,Sn. Roughly
speaking, the aim is to show that G is “small” in some sense. In Table 3.4.1 we record some of
the earlier CSFG-free results in this direction. The proof of Bochert’s bound relies on bounding
the base size of G (we will discuss bases in Section 5); indeed, the bound in Table 3.4.1 follows
immediately from Theorem 5.6. Similarly, Babai used novel combinatorial arguments to bound
the base size; a detailed account of his proof is given in [38, Section 5.3].

Armed with the O’Nan-Scott Theorem, together with CFSG, it is possible to establish essen-
tially optimal bounds. The following result is best possible (see Theorem 5.8 and [64]):

Theorem 3.17 (Liebeck, 1984). Let G be a primitive permutation group of degree n, with G 6= An,Sn.
Then there exists an absolute constant c such that |G|< nc

√
n.

Again, the proof is based on bounding the base size of G; a more detailed statement is given
in Theorem 5.8, where we also give a sketch of the proof. To see that this bound is essentially
optimal, consider the action of G = Sm on the set of 2-element subsets of {1, . . . ,m}. Here n =

(m
2

)
and n

√
n/2 < |G| < n

√
n for all n. More recently, a sharper version of Liebeck’s theorem has been

obtained by Maróti [74] (in part (i), we allow k = 1, in which case G is almost simple):

Theorem 3.18 (Maróti, 2002). Let G be a primitive permutation group of degree n. Then one of the
following holds:

(i) G6 H oSk is a product-type group, where H 6 Sym(Γ) is a primitive group with socle Am, and Γ is
the set of d-element subsets of {1, . . . ,m}.

(ii) (G,n) = (M11,11), (M12,12), (M23,23) or (M24,24);

(iii) |G|6∏
blognc−1
i=0 (n−2i)< n1+blognc.

Note that the first bound in (iii) is equality if G is the affine group AGLd(2) acting on 2d points
(which is 3-transitive, and thus primitive). As immediate corollaries, we deduce that |G|< 50n

√
n

and |G|< 3n (in fact, |G|< 2n if n > 24; note that |M24|> 224, so the condition n > 24 is needed).
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3.4.2 The degree of a primitive group

Now let us turn to the degree of a primitive group. We will consider two related problems:

1. For which positive integers n is there a primitive group of degree n (other than An or Sn)?

2. Can we determine all the primitive groups of degree n 6 N (up to permutation isomorphism), for
some suitable integer N?

In order to consider the first problem, let’s introduce some notation:

E = {n ∈ N | there exists a primitive group of degree n, other than Sn or An}
e(x) = |{n ∈ E | n6 x}|

For trivial reasons, if n ∈ E then n > 5. For larger values of n, one of the earliest results is a
theorem of Mathieu from 1861, which states that n ∈ E if 5 6 n 6 33. More generally, it turns out
that the only numbers n6 100 that are not in E are as follows:

1,2,3,4,34,39,46,51,58,69,70,75,76,86,87,88,92,93,94,96,96,99

Of course, we already know the degrees of several primitive groups:

• n = p is a prime: Zp acting regularly;

• n = p+1, where p is a prime: natural action of PGL2(p);

• n = m2: Sm oS2 in product action;

• n = 1
2 m(m−1): Sm on 2-elements subsets of {1, . . . ,m}.

Let π(x) be the number of prime numbers p6 x. Just by considering the first two possibilities for
n, we deduce that e(x)& 2π(x), and by including the square and triangular degrees we get

e(x)> 2π(x)+(1+
√

2)x
1
2 −O(log(x)).

Here the O(log(x)) term is needed because some square numbers are also triangular (there are
O(logx) such numbers at most x).

The following theorem [34] implies that this simple estimate for e(x) is rather good. Moreover,
we deduce that primitive groups are rare:

Theorem 3.19 (Cameron, Neumann & Teague, 1982). We have

e(x) = 2π(x)+(1+
√

2)x
1
2 +O(x

1
2 / logx)∼ 2x/ logx.

In particular, E has density 0 as a subset of N, so for almost all integers n, the only primitive groups of
degree n are Sn and An.

The most interesting (and most difficult) part of the proof is in estimating the possible degrees
of almost simple primitive groups of Lie type (it is not too difficult to reduce to this situation,
by applying the O’Nan-Scott Theorem). This is equivalent to estimating the possible indices of
maximal subgroups in such groups, and the proof uses various results on subgroup structure.
Of course, CFSG plays an important role in the analysis. More recently, an analogous result for
quasiprimitive groups (see Section 3.5.4) has been established by Heath-Brown, Praeger and Shalev
[55, Theorem 1.5].

Now let us turn to the second question above, which also has a long history. In 1872, Jordan
[60] gave a slightly inaccurate description of all the primitive groups of degree n6 17, and by 1912
the list had been extended by various authors to n 6 20. In the 1960s, Sims used computational
methods to determine all the primitive groups up to degree 50, and this was essentially the best
result pre-CFSG.

Not surprisingly, the powerful combination of CFSG and the O’Nan-Scott Theorem has had a
major impact on this problem. In 1988, Dixon and Mortimer determined all the non-affine groups
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of degree n 6 1000, and this has since been extended in various ways. In 2005, Roney-Dougal
completely classified all the primitive groups of degree n < 2500, and this has been pushed even
further: the state-of-the-art is a complete classification for n < 4096, due to Coutts, Quick and
Roney-Dougal [36] (the groups are presented in tables, organised according to the various O’Nan-
Scott families). Moreover, these groups can be accessed via the Primitive Groups Database in both
GAP and MAGMA. For example, the MAGMA command PrimitiveGroup(n, i) will return the i-th
primitive group of degree n. A list of the primitive groups of degree n6 1000 is given in Appendix
B of the textbook by Dixon and Mortimer [38]. According to MAGMA, there are 24558 primitive
groups of degree n < 4096, and the number in each family is as follows:

Diagonal: 68, Product-type: 1132, Almost simple: 10686, Affine: 12672, Twisted wreath: 0

3.4.3 The elements of a primitive group

We have seen that there are restrictions on the abstract structure of primitive groups, as well
as their order and degree, so it is not surprising to learn that there are also restrictions on the
elements in such groups. The following is a classical theorem of Jordan [61] (see [38, Theorem
3.3E] for a textbook proof, and Exercises 17 and 18 for the cases p = 2,3):

Theorem 3.20 (Jordan, 1873). Let G6 Sym(Ω) be a primitive permutation group of degree n, containing
a cycle of prime length p fixing at least three points. Then G = An or Sn.

The condition on the number of fixed points is essential:

• n = p: 〈(1, . . . , p)〉< Sp.

• n = p+1: In the standard action of PGL2(p), elements of order p have a unique fixed point.

• n = p+ 2: Let p = 2m− 1 be a Mersenne prime and set q = 2m. In the standard action of
PGL2(q), elements of order p have precisely two fixed points.

In more recent years, this result has been extended in several different ways. For instance, a
very recent theorem of Jones [58] (building on earlier work by many authors) provides a complete
classification of the finite primitive permutation groups containing a cycle of any length (the proof
relies on the classification of 2-transitive groups, so CFSG plays an important role). In particular,
if G contains any cycle with at least three fixed points, then G = An or Sn.

Of course, one can consider other restrictions on the cycle-structure of elements in a primitive
group. For example, Müller [77] has recently determined the primitive groups containing an
element with precisely two cycles, and this has been extended in [51] to elements with at most four
cycles. The results in the latter paper are used to study normal coverings of symmetric groups (see
Section 4.6) and there are interesting number-theoretic applications (see [51] and the references
therein). Clearly, if x ∈ G has at most four cycles then at least one of the cycles must have length
at least n/4, where n denotes the degree of G, so |x| > dn/4e. One of the key ingredients in the
proof of the main theorem of [51] is a recent classification of the primitive groups that contain
an element of order at least n/4; this uses the O’Nan-Scott Theorem and CFSG (see [50, Theorem
1.3]).

Jordan’s theorem is also related to the classical notion of minimal degree. Let G 6 Sym(Ω) be
a primitive permutation group of degree n. The minimal degree of G, denoted by µ(G), is the
smallest number of points moved by any non-identity element of G. For example, µ(Sn) = 2
and µ(An) = 3. An old problem in permutation group theory is to classify the primitive groups
G 6= Sn,An such that µ(G) is “small”. By Theorem 3.20, µ(G)> 4 for such a group G. In [4], Babai
proves that µ(G) > 1

2 (
√

n− 1) (without using CFSG), which is essentially best possible (using
CFSG, one can show that µ(G) > 2(

√
n− 1); see [68]). If one allows some exceptions, then these

results can be pushed further. For example, the primitive groups G with µ(G)> n/3 are classified
in [68], and this has been extended by Guralnick and Magaard [49], who determine the groups
with µ(G)> n/2. Both of these results require CFSG.

3.5 Variations on primitivity

In this final section we briefly consider some variations on the notion of primitivity, both stronger
and weaker, which have been investigated in recent years. This list is by no means exhaustive!
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3.5.1 2-transitivity

Recall that 2-transitivity is stronger than primitivity (see Lemma 3.6). Determining the 2-transitive
groups is an old problem:

Theorem 3.21 (Burnside, 1897). Any finite 2-transitive permutation group is either affine or almost
simple.

In other words, a 2-transitive group has a unique minimal normal subgroup, which is ei-
ther elementary abelian and regular, or nonabelian and simple. As previously mentioned, the
2-transitive affine groups were classified by Huppert (in the soluble case) and Hering (insoluble
groups). Using CFSG, the 2-transitive almost simple groups have also been classified (see [28, Sec-
tion 5] and [38, Section 7.7], for example). It turns out that there are eight infinite families; these
include the standard action of PGLd(q), and natural actions of the Suzuki groups 2B2(q) and Ree
groups 2G2(q) of degree q2 +1 and q3 +1, respectively. There are also some “sporadic” examples,
such as a 2-transitive action of A7 on 15 points (this arises from the fact that A7 < A8 ∼= PSL4(2)),
and a 2-transitive action of the Conway group Co3 of degree 276. See [30, Tables 7.3 and 7.4] for
tables that describe all the 2-transitive groups.

Remark 3.22. The finite permutation groups with higher degrees of transitivity have also been
classified using CFSG (see [30, Sections 7.3 and 7.4]). Firstly, if G is a k-transitive group of degree
n, and G 6= An,Sn, then k 6 5. More precisely:

• There are three infinite families of 3-transitive groups, including the standard actions of
PGL2(q) and AGLd(2) (with d > 2). There are also five sporadic examples that are 3-transitive
but not 4-transitive:

(G,n) = (M11,12), (M12,12), (M22,22), (M22.2,22), (A7 n24,16)

• If k = 4 and G is not 5-transitive, then (G,n) = (M11,11) or (M23,23).

• If k = 5 then (G,n) = (M12,12) or (M24,24).

It is not surprising that the Mathieu sporadic simple groups feature prominently here; Mathieu
discovered these groups in the 1860s and 1870s in his search for highly transitive permutation
groups.

3.5.2 3
2 -transitivity

A transitive permutation group G 6 Sym(Ω) is 3
2 -transitive if all the orbits of Gα on Ω \ {α} have

the same size, and this size is greater than 1 (i.e. Gα acts nontrivially on Ω\{α}). This notion was
introduced by Wielandt [86]; it is stronger than transitivity, but weaker than 2-transitivity, so the
terminology is appropriate.

Examples 3.23.

(i) Any 2-transitive group (other than S2 on 2 points) is 3
2 -transitive.

(ii) More generally, any non-regular normal subgroup of a 2-transitive group is 3
2 -transitive.

(iii) The action of G = S7 (or A7) on the set Ω of 2-element subsets of {1, . . . ,7} is 3
2 -transitive.

Here |Ω|= 21 and Gα has two orbits, both of length 10 (see Exercise 19).

(iv) Every Frobenius group is 3
2 -transitive. Here a transitive permutation group G 6 Sym(Ω) is

Frobenius if it is non-regular and only the identity element has more than one fixed point.
Equivalently, if H = Gα then H∩Hx = 1 for all x ∈G\H. In particular, Gα acts semiregularly
on Ω\{α}, so G is 3

2 -transitive.

The following theorem of Wielandt [86, Theorem 10.4] is a first step towards a classification of
these groups:

Theorem 3.24 (Wielandt, 1964). Any 3
2 -transitive group is either primitive or Frobenius.
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Later in the 1960s, Passman classified all soluble 3
2 -transitive groups. Much more recently, an

analogue of Theorem 3.21 for 3
2 -transitive groups has been established (see [6, Theorem 1.1]):

Theorem 3.25 (Bamberg, Giudici, Liebeck, Praeger & Saxl, 2013). Any finite primitive 3
2 -transitive

permutation group is either affine or almost simple. Moreover, all the almost simple groups with this
property have been determined.

It turns out that all the almost simple examples are 2-transitive, with the exception of one
infinite family with socle PSL2(q) (with q even and degree 1

2 q(q− 1)), and the above example of
A7 (or S7) acting on 21 points. The proof uses all the usual machinery: the O’Nan-Scott Theorem,
combined with CFSG and detailed information on the structure of simple groups. It also uses an
elementary (but very useful) observation: if G6 Sym(Ω) is transitive and r is a prime that divides
|Ω| and a subdegree of G, then G is not 3

2 -transitive. Some recent work on bases for permutation
groups is another important ingredient in the proof (we will discuss bases in Section 5).

Even more recently, the 3
2 -transitive affine groups of the form HV 6 AGL(V ), where V = (Fp)

d

and p divides |H|, have been determined (see [48]).

3.5.3 Extreme primitivity

A non-regular primitive permutation group G 6 Sym(Ω) is extremely primitive if Gα acts primi-
tively on each of its nontrivial orbits. Of course, this notion is stronger than primitivity.

Examples 3.26.

(i) Every 2-primitive group is extremely primitive (such a group G is primitive, and Gα acts
primitively on Ω\{α}). For example, every 3-transitive group is 2-primitive, so the standard
actions of PGL2(q) and AGLd(2) (with d > 3) are 2-primitive.

(ii) Two sporadic examples:

G = J2, Gα = PSU3(3) : |Ω|= 100 = 1+36+63
G = Co2, Gα = McL : |Ω|= 47104 = 1+275+2025+7128+15400+22275

The study of extremely primitive groups can be traced back to work of Manning in the 1920s.
Indeed, a theorem of Manning from 1927 shows that if G is such a group then Gα acts faithfully
on each of its nontrivial orbits, so Gα is a primitive permutation group in its own right. This is a
very important observation because it implies that the abstract structure of Gα is rather restricted
(indeed, we can apply the O’Nan-Scott Theorem to Gα ). This is exploited in the proof of the
following theorem (see [73, Theorem 1.1]):

Theorem 3.27 (Mann, Praeger & Seress, 2007). Any finite extremely primitive permutation group is
either affine or almost simple.

In the same paper, Mann, Praeger and Seress determine almost all the affine examples – as
usual, there are a small number of infinite families, plus a handful of sporadic examples. They
prove that their list is complete, up to finitely many additional groups. The reason they are unable
to obtain a complete classification is related to an old conjecture of G.E. Wall from 1961 on the
number of maximal subgroups of a finite group. The conjecture asserts that any finite group G
has at most |G| maximal subgroups (Wall proved this for soluble groups). In [73], this is needed
in the case where G is simple, but it is only known to be true asymptotically, that is, if |G| > c
for some undetermined constant c. This is the reason why there may be finitely many additional
examples.

Therefore, the main challenge is to determine the extremely primitive almost simple groups.
With this aim in mind, Burness, Praeger and Seress have handled the case where the socle is an
alternating, classical or sporadic group (see [24, 25]), and work on determining the groups with
socle an exceptional group of Lie type is in progress. Again, it turns out that recent results on
bases for almost simple groups plays a key role.

Remark 3.28. Wall’s conjecture is false. The breakthrough occurred during an AIM workshop on
group cohomology in June 2012; see

http://aimath.org/news/wallsconjecture/wall.conjecture.pdf
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Figure 3.1: Some families of transitive permutation groups

for an exciting account of this discovery by Guralnick et al., which is based on extensive computer
calculations with Kazhdan-Lusztig polynomials and 1-cohomology. The first counterexamples
are primitive affine groups of the form SL8(p)nV for some (large) irreducible module V for SL8(p)
and large prime p (large enough so that Lusztig’s conjecture holds).

3.5.4 Quasiprimitivity

Recall that any nontrivial normal subgroup of a primitive group is transitive (see Lemma 3.5); this
observation motivates the following definition. A permutation group G 6 Sym(Ω) is quasiprim-
itive if every nontrivial normal subgroup of G is transitive. Clearly, every primitive group is
quasiprimitive, but this is a weaker notion. For example, any transitive action of a finite simple
group G is quasiprimitive, but it is only primitive if Gα is a maximal subgroup.

Praeger has established an analogue of the O’Nan-Scott Theorem for quasiprimitive groups
(see [78]); similar families arise, with some tweaking of the conditions. For example, a diagonal-
type group G with socle T k (and k > 3) is quasiprimitive if and only if G 6 T k.(Out(T )× Sk) and
the group induced by G on the k factors of T k is transitive (rather than primitive). Quasiprimi-
tive groups have applications in graph theory; for example, every (non-bipartite) 2-arc transitive
graph is a cover of a 2-arc transitive graph with a quasiprimitive automorphism group, so prop-
erties of quasiprimitive groups are important in the study of such graphs.

In Figure 3.1 we present a diagrammatic representation of the relations between the various
transitive permutation groups we have considered in this section.
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4 Derangements

4.1 Introduction

The study of derangements is a classical topic with a rich history that can be traced all the way
back to the early 18th century. It is an active area of current research, with numerous applications
in diverse areas such as number theory, representation theory and topology. There are also many
interesting open problems. In this section, we will introduce the basic notions and we will focus
on the following themes:

• Existence

• Proportion

• Order

• Elusivity and related problems

Let G be a permutation group on a set Ω.

Definition 4.1. An element x ∈ G is a derangement if it has no fixed points on Ω. Let ∆(G) be the
set of derangements in G (which may be the empty set!).

Note that ∆(G) is a normal subset of G. For example, the derangements in S5 (with respect to
the natural action on {1, . . . ,5}) are (1,2,3,4,5), (1,2,3)(4,5) and their conjugates.

Clearly, if G is transitive with point stabiliser H then

∆(G) = G\
⋃

g∈G

Hg (4.1)

so x ∈ G is a derangement if and only if xG∩H is empty.

4.2 Existence

Let G 6 Sym(Ω) be a permutation group of degree n > 2. Recall that the Orbit-Counting Lemma
states that

1
|G| ∑x∈G

|CΩ(x)|= k

where k is the number of orbits of G on Ω (see Exercise 4). Now, if G is transitive then k = 1 and
|CΩ(1)| = n > 2, so there exists an element x ∈ G with |CΩ(x)| = 0. In other words, G contains a
derangement. This is a theorem of Jordan (see [59]):

Theorem 4.2 (Jordan, 1872). Let G be a transitive permutation group of degree n > 2. Then G contains
a derangement.

In view of (4.1), Jordan’s theorem is equivalent to the well known fact that

G 6=
⋃

g∈G

Hg (4.2)

for any proper subgroup H of a finite group G.

Remark 4.3. It is easy to see that Jordan’s theorem does not extend to infinite permutation groups:

(i) Let FSym(Ω) be the finitary symmetric group on an infinite set Ω; it comprises the permu-
tations of Ω with finite support (that is, the permutations that move only finitely many
elements of Ω). Clearly, this transitive group does not contain any derangements.

(ii) Let V be an n-dimensional vector space over C and let G = GL(V ). Let Ω be the set of
complete flags of V , that is, the set of subspace chains

0 =U0 ⊂U1 ⊂U2 ⊂ ·· · ⊂Un−1 ⊂Un =V

where each Ui is an i-dimensional subspace of V . The natural action of G on V induces a
transitive action of G on Ω. For each x ∈G there is a basis of V in which x is represented by a
lower triangular matrix (e.g. the Jordan canonical form), so x fixes a complete flag and thus
G has no derangements.
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(iii) More generally, let G be a connected algebraic group over an algebraically closed field K of
characteristic p> 0, and let B be a Borel subgroup of G. Then every element of G belongs to
a conjugate of B, so G has no derangements in its action on the flag variety G/B. In fact, by a
theorem of Fulman and Guralnick [45, Theorem 2.4], if G is a simple algebraic group acting
on a coset variety G/H, then G is derangement-free if and only if one of the following holds:

(a) H contains a Borel subgroup (so H is a parabolic subgroup of G);

(b) G = Spn(K), H = On(K) and p = 2;

(c) G = G2(K), H = SL3(K).2 and p = 2.

As described by Serre [84], Theorem 4.2 has some interesting applications in number theory
and topology:

(i) A number-theoretic application. Let f ∈Z[x] be an irreducible polynomial of degree n> 2. Then
f has no roots modulo p for infinitely many primes p.

(ii) A topological application. Let f : T → S be a finite covering of a topological space S, where f
has degree n> 2 (so that | f−1(s)|= n for all s ∈ S) and T is path-connected. Then there exists
a continuous map ϕ : S1→ S from the circle S1 that cannot be lifted to the covering T .

In view of Jordan’s theorem, two natural questions arise:

• How abundant are derangements in transitive permutation groups?

• Can we find derangements with additional properties, such as a prescribed order?

4.3 Counting

Let G be a transitive permutation group on a set Ω of size n> 2. Let

δ (G) =
|∆(G)|
|G|

∈ (0,1)

denote the proportion of derangements in G (equivalently, δ (G) is the probability that a randomly
chosen element of G is a derangement).

Examples 4.4.

(i) If G = S5 and Ω = {1,2,3,4,5}, then

δ (G) =
|(1,2,3,4,5)G|+ |(1,2,3)(4,5)G|

|G|
=

24+20
120

=
11
30

.

(ii) If G is regular then δ (G) = 1− 1
n . In particular, δ (G) can be arbitrarily close to 1.

(iii) A 2-transitive group G 6 Sym(Ω) is sharply 2-transitive if for any two pairs (α1,α2) and
(β1,β2) of distinct elements in Ω there exists a unique x ∈ G such that (α1,α2)

x = (β1,β2).
If G is such a group then δ (G) = 1

n (see Exercise 21). This shows that δ (G) can be arbitrarily
close to 0.

(iv) Consider the standard action of G = D2n on the set of vertices of a regular n-gon. It is an easy
exercise to show that

δ (G) =

{
3/4−1/2n n even
1/2−1/2n n odd

The study of derangements in transitive permutation groups has a long history. In 1708, the
French mathematician Pierre de Montmort wrote one of the first highly influential books on prob-
ability, entitled Essay d’analyse sur les jeux de hazard [76], in which he presents a systematic com-
binatorial analysis of games of chance (e.g. card games, etc.) that were popular in the gambling
dens of early 18th century Paris.

The card game treize features prominently in Montmort’s book. Here is Montmort’s descrip-
tion of the game (taken from the second edition of his book, published in 1713):
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“The players draw to see who will be the dealer. Let’s call the dealer ‘Pierre’, and let’s
suppose that there are as many other players as you like. Pierre takes a full deck of
52 cards, shuffles them, and deals them out one after the other, calling out ‘un’ as he
turns over the first card, ‘deux’ as he turns over the second, ‘trois’ as he turns over the
third, and so on up to the thirteenth. Now if, in this whole series of cards, he never
once turns over the card he is naming, he pays out what each other player has put up
for the game, and the deal passes to the player sitting to his right.”

Montmort studied several variations of this game. For example, suppose we start with 13
distinct cards from a single suit. In the language of permutation groups, Pierre’s initial hand
corresponds to an element of the symmetric group S13, and he “loses” the game if this element is
a derangement. Montmort calculated the following probability:

P(Pierre loses) = δ (S13) =
63633137
172972800

= 0.36788...

More generally, Montmort introduced the familiar “inclusion-exclusion principle” to obtain the
following formula for δ (Sn), for any n. (In the statement, [x] denotes the integer nearest to x.)

Theorem 4.5 (Montmort, 1708). Consider the standard action of Sn on Ω = {1, . . . ,n}, where n > 2.
Then

δ (Sn) =
1
2!
− 1

3!
+ · · ·+ (−1)n

n!
=

[n!/e]
n!

In particular, δ (Sn) tends to 1/e as n tends to infinity.

Proof. Let G = Sn and let δ ′(G) be the probability that a randomly chosen element of G is not a
derangement, so δ (G) = 1−δ ′(G). In addition, for each i ∈Ω, let Ei be the event that a randomly
chosen element of G fixes i. Then

δ
′(G) = P(E1∪·· ·∪En)

= ∑
i
P(Ei)−∑

i< j
P(Ei∩E j)+ ∑

i< j<k
P(Ei∩E j ∩Ek)−·· ·+(−1)n+1P(E1∩·· ·∩En)

= ∑
i

(n−1)!
n!

−∑
i< j

(n−2)!
n!

+ ∑
i< j<k

(n−3)!
n!

−·· ·+(−1)n+1 1
n!

=

(
n
1

)
· (n−1)!

n!
−
(

n
2

)
· (n−2)!

n!
+

(
n
3

)
· (n−3)!

n!
−·· ·+(−1)n+1 1

n!

= 1− 1
2!

+
1
3!
−·· ·+(−1)n+1 1

n!

Remark 4.6. More generally, the distribution of fixed points in a random permutation in Sn tends
to a Poisson(1) distribution as n tends to infinity (see Diaconis et al. [37] for generalisations).
Therefore, if X denotes the number of fixed points of a randomly chosen permutation in Sn, then
for each fixed integer k > 0 we have

P(X = k)→ 1
k!e

as n→ ∞

In general, it is very difficult to compute δ (G) precisely and we must make do with bounds.
Of course, Jordan’s theorem implies that δ (G)> 0, but can we do better?

Rather surprisingly, the first general result in this direction only appeared in 1992 [31]; the
proof of Theorem 4.7 below is another nice application of the Orbit-Counting Lemma. Further
motivation stems from a problem posed by the number theorist H. Lenstra:

Is there a lower bound on δ (G) in terms of n?

This problem arose naturally in Lenstra’s analysis of the number field sieve in integer factorisation
(see [15]). The connection is as follows. Let f ∈ Z[x] be an irreducible polynomial of degree n, and
let π(m) be the number of prime numbers p6 m. Define

Z( f ,m) =
|{p ∈ π(m) | f has no roots modulo p}|

π(m)
.
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By Chebotarev’s density theorem, Z( f ,m) tends to δ (G) as m tends to infinity, where G is the Galois
group of f viewed as a permutation group on its roots. (In particular, since Jordan’s theorem
implies that δ (G) > 0, one can show that there are infinitely many primes p such that f has no
roots modulo p; see [84, Section 4].)

Theorem 4.7 (Cameron & Cohen, 1992). Let G be a transitive permutation group of degree n> 2. Then
δ (G)> 1/n, with equality if and only if G is sharply 2-transitive.

Proof. Fix α ∈Ω and set H = Gα , so |G|= n|H|. By the Orbit-Counting Lemma,

∑
x∈G
|CΩ(x)|= |G|

and

∑
x∈H
|CΩ\{α}(x)|= k|H|= k|G|

n

where k denotes the number of orbits of H on Ω\{α}. Therefore,

|G|− k|G|
n

= ∑
x∈G
|CΩ(x)|− ∑

x∈H
|CΩ\{α}(x)|= ∑

x∈G
|CΩ(x)|− ∑

x∈H
|CΩ(x)|+ |H|

= ∑
x∈G\(∆(G)∪H)

|CΩ(x)|+ |H|

> (|G|− |∆(G)|− |H|)+ |H|= |G|− |∆(G)|

Rearranging, we get

δ (G) =
|∆(G)|
|G|

>
k
n
>

1
n
.

Moreover, if equality holds, then k = 1 and thus G is 2-transitive. Further, if |CΩ(x)| > 2 for some
x ∈ G then x ∈ H, so x fixes α . But this holds for any choice of α , so x = 1 and thus G is sharply
2-transitive. See Exercise 21 for the converse.

This result is clearly best possible, but stronger bounds hold if we allow some specified excep-
tions. Here the best result to date is due to Guralnick and Wan [52]:

Theorem 4.8 (Guralnick & Wan, 1997). Let G be a transitive permutation group of degree n> 2. Then
one of the following holds:

(i) δ (G)> 2/n;

(ii) G is sharply 2-transitive;

(iii) (G,n) = (S4,4), (S5,5), (A5,5) or (Z3,3).

The cases in (iii) are genuine exceptions (e.g. recall that if (G,n) = (S5,5) then δ (G) = 11/30 <
2/5). It is interesting to note that this extension of the lower bound on δ (G) from 1/n to 2/n
requires the classification of 2-transitive groups, which in turn relies on CFSG. As explained in
[52], this result has applications to algebraic curves over finite fields.

Inspired by Montmort’s theorem on the proportion of derangements in Sn, it is natural to con-
sider the asymptotic behaviour of δ (G) when G belongs to other interesting infinite families of
groups, such as simple groups. For example, it is not too difficult to show that δ (An) > 1/3 and
δ (PSL2(q)) > 1/3 for all n,q > 5 (in terms of the standard actions of degree n and q+ 1, respec-
tively; see Exercise 24). In both cases, we observe that δ (G) is bounded away from zero by an
absolute constant. Indeed, a deep theorem of Fulman and Guralnick [42, 43, 44, 45] shows that
this property holds for any simple transitive group.

Theorem 4.9 (Fulman & Guralnick, 2014). There exists an absolute constant ε > 0 such that δ (G)> ε

for any simple transitive group G.
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This theorem confirms a conjecture of Boston et al. [11] and Shalev. The proof uses CFSG, and
a detailed analysis of the conjugacy classes and maximal subgroups of simple groups. Note that
for the purposes of deriving a lower bound on δ (G), we may assume that G is primitive.

The asymptotic nature of the proof does not yield an explicit constant, although it is claimed
in [45] that we can take ε to be approximately 1/25 with at most finitely many exceptions (it is ex-
pected that there are no exceptions, and it is speculated in [11, p.3274] that the optimal constant is
ε = 2/7, which is realised by the standard action of PSL3(2)). Fulman and Guralnick also establish
strong asymptotic results. For instance, they show that apart from some known exceptions, δ (G)
tends to 1 as |G| tends to infinity (the exceptions include G = An acting on k-sets with k bounded,
for example).

Remark 4.10. Let’s make a few additional comments on Theorem 4.9:

(i) The result does not extend to almost simple groups. For example, let p and r be primes
such that r and |PGL2(p)| = p(p2−1) are coprime, and set G = PGL2(pr)o 〈φ〉 and Ω = φ G,
where φ is a field automorphism of PGL2(pr) of order r (so G acts transitively on Ω, and
Gα = PGL2(p)×〈φ〉). Then every element in G\PGL2(pr) has a fixed point, whence

δ (G)6
|PGL2(pr)|
|G|

=
1
r

and thus δ (G) tends to 0 as r tends to infinity.

(ii) Using Theorem 4.9 and the O’Nan-Scott Theorem, Fulman and Guralnick have established
a weaker bound that applies more generally: There exists an absolute constant ε > 0 such
that δ (G) > ε/ logn for any non-affine primitive group of degree n > 2 (see [45, Theorem
1.5]). In view of (i), taking p = 2, this is essentially best possible.

(iii) For a general finite primitive group G, the parameter δ (G) behaves rather differently. In-
deed, by a theorem of Boston et al. [11, Theorem 5.11], the set

{δ (G) | G is a finite primitive group}

is dense in the open interval (0,1). However, it is not known if this set is equal to (0,1)∩Q.

(iv) Let G be a simple algebraic group acting on a coset variety G/H, as in part (iii) of Remark
4.3. Here [45, Lemma 2.2] implies that G \∆(G) is dense in G (with respect to the Zariski
topology) if and only if H contains a maximal torus of G. In particular, if H does not contain
a maximal torus then ‘almost all’ elements in G are derangements (in the sense that ∆(G)
contains a non-empty open subvariety of G).

4.4 Order and elusivity

In this section we will consider derangements with additional properties, such as a specified
order. The most general result in this direction is the following theorem of Fein, Kantor and
Schacher [41] concerning derangements of prime power order:

Theorem 4.11 (Fein, Kantor & Schacher, 1981). Let G6 Sym(Ω) be a transitive permutation group of
degree n> 2. Then G contains a derangement of prime power order.

Sketch proof. The basic strategy is as follows. Assume the theorem is false and let G be a minimal
counterexample (with respect to |G|), so each x ∈ G of prime power order has fixed points. Sup-
pose G is imprimitive and let ∆ = {Γ1, . . . ,Γk} be a maximal block system. The primitive group
G∆ 6 Sym(∆) induced by G on ∆ also has no derangements of prime power order (indeed, if y ∈G
induces a derangement of p-power order on ∆, then some power ym (with (m, p) = 1) is a derange-
ment of p-power order on Ω). Therefore, we may assume G is primitive. Let N be a nontrivial
normal subgroup of G. Then N is transitive on Ω (see Lemma 3.5) and N does not contain a de-
rangement of prime power order, so the minimality of |G| implies that N = G, whence G is simple.

The proof now proceeds case-by-case through the various families of simple groups arising in
the Classification. It would be very interesting to find a Classification-free proof!
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Let’s give some details in the case G = Ad , d > 5. Set H = Gα , which is a maximal subgroup
since G is primitive. Suppose H acts intransitively on {1, . . . ,d}, so H = (Se× Sd−e)∩G for some
16 e < d. Let p be a prime divisor of d and write d = dpt, where dp is the largest p-power dividing
d. If p is odd, let x ∈ G be the product of t disjoint cycles of length dp and note that H contains a
conjugate of x (because we are assuming that H meets every G-class of elements of prime order),
so dp divides e. Similarly, if p = 2 and d2 > 4 then H contains an element that is the product of
2t disjoint cycles of length d2/2, so d2/2 divides e. Therefore, e = d/2 is the only possibility, so
H = (Sd/2×Sd/2)∩G and |H| divides ((d/2)!)2. By Bertrand’s Postulate, there is a prime p such that
d/2 < p < d. Let x ∈ G be an element of order p. Since p does not divide |H|, it follows that xG∩H
is empty, so x is a derangement. This is a contradiction, whence H is transitive.

Since G does not contain a derangement of order 3, it follows that H contains a 3-cycle, and
thus H acts imprimitively on {1, . . . ,d} (since Ad is the only primitive subgroup of Ad containing
a 3-cycle, by Theorem 3.20). Therefore, H = (Sa o Sb)∩G for integers a,b > 1 with d = ab, so |H|
divides (a!)b(b!). Now choose a prime p such that d/2< p< d, and repeat the above argument.

One of the original motivations for Theorem 4.11 stems from an application in number the-
ory. Let K be a field and let A be a central simple algebra (CSA) over K, so A is a simple finite-
dimensional associative K-algebra with centre K. By the Artin-Wedderburn theorem, A is iso-
morphic to a matrix algebra Mn(D) for some division algebra D. Under the Brauer equivalence,
two CSAs A and A′ over K are equivalent if A ∼= Mn(D) and A′ ∼= Mm(D) for some n,m, and the
set of equivalence classes forms a group under tensor product. This is called the Brauer group
of K, denoted B(K). Now, if L/K is a field extension then the inclusion K ⊆ L induces a group
homomorphism B(K)→B(L), and the relative Brauer group B(L/K) is the kernel of this homo-
morphism. The connection to derangements arises from the key observation that Theorem 4.11 is
equivalent to the fact that B(L/K) is infinite for any nontrivial extension of global fields. See [41]
for further details.

In view of Theorem 4.11, it is natural to ask whether or not every transitive group contains a
derangement of prime order. First observe that G6 Sym(Ω) contains a derangement of prime order
p only if |Ω| is divisible by p (since every cycle in the decomposition of a derangement of order
p must have length p). Also note that if G contains a nontrivial semiregular subgroup H, then
any element x ∈ H of prime order is a derangement. More precisely, G contains a derangement of
prime order if and only if G has a nontrivial semiregular subgroup. However, not all transitive
permutation groups contain such elements:

Examples 4.12.

(i) Consider the 3-transitive action of the smallest Mathieu group G = M11 on 12 = 22.3 points,
so Gα = PSL2(11). Here G has unique conjugacy classes of elements of order 2 or 3, and |Gα |
is divisible by 2 and 3, so G does not contain a derangement of prime order. (Note that G
contains a derangement of order 4.)

(ii) The following example is due to Fein, Kantor and Schacher [41]. Let p= 2n−1 be a Mersenne
prime and let G be the group

AGL1(p2) = {x 7→ ax+b | a ∈ (Fp2)×, b ∈ Fp2}

of affine transformations of Fp2 . Let H = AGL1(p) be the subgroup of transformations with
a,b ∈ Fp. Then G acts transitively on G/H, so we may view G as a permutation group of
degree p(p + 1). Since G contains a unique conjugacy class of elements of order 2 or p,
we deduce that G does not contain a derangement of prime order. Generalisations of this
construction are given in [32], producing elusive groups of degree pm(p+1) for all Mersenne
primes p and all positive integers m.

The terminology in the next definition suggests that transitive groups with no derangements
of prime order are somewhat rare.

Definition 4.13. Let G be a transitive group of degree n > 2. Following [32], we say that G is
elusive if it does not contain a derangement of prime order. Furthermore, following [18], if p is a
prime divisor of n then G is p-elusive if G does not contain a derangement of order p, and strongly
p-elusive if G does not contain a derangement of p-power order.
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Elusive permutation groups have been much studied in recent years. For example, vari-
ous constructions are given in [32, 47], and the following theorem of Giudici [46] classifies the
(quasi)primitive elusive groups. (Note that this result indicates that every quasiprimitive elusive
group arises naturally from the specific example in part (i) of Examples 4.12.)

Theorem 4.14 (Giudici, 2003). Let G be an elusive permutation group on Ω with a transitive minimal
normal subgroup N. Then G = M11 oK acting with its product action on Ω = Γk for some k > 1, where K
is a transitive subgroup of Sk and |Γ|= 12.

Sketch proof. By Lemma 2.5(ii), N = T k for some simple group T . Note that N is also elusive. If T
is abelian, then the transitivity of N implies that Nα = Nβ for all α,β ∈ Ω, so N is regular, but this
contradicts the fact that N is elusive (all elements of prime order have fixed points). Therefore, T
is a nonabelian simple group.

Set L = Nα and write N = T k = T1× ·· · × Tk and Li = L∩ Ti. Let Ci be a conjugacy class of Ti
containing elements of prime order. Then Ci is a conjugacy class of N, and thus the elusivity of N
implies that Ci∩L is non-empty and so Li 6= 1. Moreover, the action of Ti on the set of cosets Ti/Li
is elusive.

This essentially reduces the problem to determining the simple elusive groups. At this point,
Giudici appeals to a theorem of Liebeck, Praeger and Saxl [67, Corollary 5], which lists all the
finite simple groups which have a proper subgroup with the same set of prime divisors. One then
has to study the cases on this list to determine whether or not there is a derangement of prime
order. It turns out that the only simple elusive group is M11 acting on a set of size 12 with point
stabiliser PSL2(11). Therefore, Ti =M11, Li = PSL2(11) and the given structure of G quickly follows
(note that K is transitive since N = (M11)

k is a minimal normal subgroup).

Corollary 4.15. The 3-transitive action of M11 on 12 points is the only almost simple primitive elusive
group.

In other words, with a single exception, every almost simple primitive group contains a de-
rangement of prime order. This observation has motivated recent work of Burness, Giudici and
Wilson that aims to provide a systematic, quantitative study of derangements of prime order in
almost simple primitive groups. A basic question is the following:

Let G be an almost simple primitive group of degree n, and let p be a prime divisor of n. Does
G contain a derangement of order p?

Further impetus for focussing on the almost simple case comes from the following reduction
theorem (see [18, Theorem 2.1]; the proof uses the O’Nan-Scott Theorem):

Theorem 4.16. Let G be a primitive permutation group on a finite set Ω, with socle N. Let p be a prime
dividing |Ω|. Then one of the following holds:

(i) G is almost simple;

(ii) N contains a derangement of order p;

(iii) G6H oSk acting with its product action on Ω = Γk for some k> 2, where H 6 Sym(Γ) is primitive,
almost simple and the socle of H is p-elusive.

A detailed analysis of derangements of prime order in almost simple primitive groups with
socle an alternating or sporadic group is given in [18]; in particular, all the p-elusive and strongly
p-elusive examples are determined. An analogous study of derangements in almost simple clas-
sical groups will appear in the forthcoming book [17], as an application of a more general inves-
tigation of the subgroup structure and conjugacy classes of classical groups.

Finally, let’s record an intriguing open problem on the degrees of elusive groups (in some
sense, a positive solution would formally justify the terminology):

Does the set of degrees of elusive groups have density zero as a subset of N?
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4.5 The polycirculant conjecture

In a different direction, derangements of prime order arise naturally in graph theory. Recall that
a digraph Γ consists of a set V of vertices and a set A of ordered pairs of distinct elements of
V , called arcs. An automorphism of Γ is a permutation g of V such that (u,v) ∈ A if and only if
(ug,vg) ∈ A , and Aut(Γ) denotes the automorphism group of Γ. We say that Γ is vertex-transitive
if Aut(Γ) acts transitively on V . We will also say that Γ admits a derangement of prime order if
Aut(Γ) contains such an element (with respect to the action of Aut(Γ) on V ).

In 1981, Marušič [75] asked the following question:

Does every finite vertex-transitive digraph admit a derangement of prime order?

For example, if G is a nontrivial finite group and S ⊂ G is a subset with 1 6∈ S, then the corre-
sponding Cayley digraph Cay(G,S) has the desired property (here V = G, and (g,h) ∈ A if and
only if hg−1 ∈ S). Indeed, observe that G acts regularly by right multiplication on the vertices of
Cay(G,S).

Marušič’s question can be generalised as follows. Let G be a permutation group on a finite set
Ω. The 2-closure of G, denoted by G(2), is the largest subgroup of Sym(Ω) that preserves the orbits
of G on Ω×Ω. For example, if G is 2-transitive then

{(α,α) | α ∈Ω}, {(α,β ) | α,β ∈Ω, α 6= β}

are the orbits of G on Ω×Ω, so G(2) = Sym(Ω). We say that G is 2-closed if G = G(2). Note that the
automorphism group Aut(Γ) of a finite digraph Γ is 2-closed: any permutation that fixes the orbits
of Aut(Γ) on ordered pairs of vertices also fixes A setwise, and so must be an automorphism of
Γ. However, not every 2-closed group is the full automorphism group of a digraph. For example,
the regular action of the Klein 4-group Z2× Z2 on four points is 2-closed, but it is not the full
automorphism group of any digraph.

In 1997, Klin [29] extended Marušič’s question to 2-closed groups. This led to what is now
referred to as the Polycirculant Conjecture.

Conjecture 4.17 (The Polycirculant Conjecture). Let G be a finite transitive 2-closed permutation
group. Then G has a derangement of prime order.

One obvious way to attack this conjecture is to determine all elusive groups and show that
none are 2-closed; of course, none of the known elusive groups are 2-closed! Giudici’s theorem
implies that all minimal normal subgroups of a counterexample to the Polycirculant Conjecture
must be intransitive, which is a strong restriction. Various special cases have been handled in
recent years, but the full conjecture (and indeed Marušič’s original question) is still very much
open.

4.6 Related problems and applications

To close this discussion on derangements, we briefly mention some related problems.

1. Normal coverings. Let G be a finite group and recall that if H is a proper subgroup of G then
the union of the G-conjugates of H is a proper subset of G (see (4.2)). A collection of proper
subgroups {H1, . . . ,Ht} is a normal covering of G if

G =
t⋃

i=1

⋃
g∈G

Hg
i

and we define γ(G) to be the minimal size of a normal covering of G. By Jordan’s theorem,
γ(G) > 2, and this invariant has been investigated in several recent papers (see [13, 14],
for example). The connection to derangements is transparent: if {H1, . . . ,Ht} is a normal
covering then each x ∈ G has fixed points on the set of cosets G/Hi, for some i.

2. Character theory. Let G 6 Sym(Ω) be a transitive permutation group of degree n > 2 with
point stabiliser H, and let χ = 1G

H be the corresponding permutation character (so χ(x) =
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|CΩ(x)| for all x ∈ G). In this context, Theorem 4.2 implies that χ(x) = 0 for some x ∈ G (in
which case, we say that χ vanishes at x), and there is an element of prime power order with
this property by Theorem 4.11. In fact, a classical theorem of Burnside implies that if χ is any
nonlinear irreducible complex character of G then χ(x) = 0 for some x∈G, and a much more
recent result of Malle, Navarro and Olsson [72] tells us that we can choose x with prime
power order. The proof of the latter result uses Theorem 4.11.

In recent work, Burness and Tong-Viet [27] have determined the finite primitive permu-
tation groups with a unique conjugacy class of derangements (for example, any sharply
2-transitive group has this property), and this is used to obtain detailed information on the
structure of finite groups with a nonlinear irreducible character that vanishes on a unique
conjugacy class.

3. Isbell’s conjecture. Recall that if G is a transitive permutation group of degree n > 2, then
Theorem 4.11 guarantees the existence of a derangement of p-power order for some prime
p, but the proof does not provide any information about the primes involved. This is related
to the following conjecture of Isbell from the early 1960s, which asserts that if a particular
prime power dominates n, then G contains a derangement that has order a power of that
prime.

Conjecture (Isbell, c.1960). Let p be a prime. There is a function f (p,k) such that, if G is a
transitive permutation group of degree n = pak with (p,k) = 1 and a > f (p,k) then G contains a
derangement of p-power order.

Very little progress has been made on this conjecture (even for the prime p= 2, for example).

4. Algorithms. Given a set of generators for a permutation group G of degree n > 2, there are
efficient (polynomial time) algorithms to determine whether or not G is transitive. If G
is transitive, then Jordan’s theorem implies that G contains a derangement, and there are
efficient randomised algorithms to find a derangement in G. For instance, if we randomly
choose m elements in G, then Theorem 4.7 implies that the probability that none of these
elements is a derangement is at most

(1−1/n)m < e−m/n.

Therefore, if we choose n2 elements then the probability that one of them is a derangement
is at least 1− e−n. Very recently, a theoretical computer scientist, Vikraman Arvind, has
derandomised this process and obtained a deterministic polynomial-time algorithm for finding
a derangement that does not rely on CFSG (see [1]).

5. Thompson’s question. J.G. Thompson has posed the following question (see Problem 8.75 in
the Kourovka Notebook [62]):

Let G be a finite primitive permutation group. Is ∆(G) a transitive subset of G?

In other words, if α,β ∈ Ω with α 6= β then is there a derangement g ∈ G such that αg = β?
It is not difficult to show that primitivity is essential here.
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5 Bases

5.1 Introduction

Let G 6 Sym(Ω) be a permutation group. Since G acts faithfully on Ω, the identity is the only
element of G that fixes every point in Ω. However, there may be smaller subsets of Ω with a
trivial pointwise stabiliser. For example, if G = GL(V ) and Ω =V , then any subset of V containing
a basis (in the usual sense of linear algebra) has this property. This leads us naturally to the
notion of a base for G, which is another classical concept in permutation group theory. We will
see that bases have many applications (both old and new), and there have been major advances
in our understanding in recent years, using a wide range of tools and techniques. In particular,
probabilistic methods have been used very effectively. We will focus on the following themes:

• Bounds for primitive groups

• Bases for almost simple groups: probabilistic methods

• Bases for algebraic groups

Definition 5.1. A subset B of Ω is a base for G if the pointwise stabiliser of B in G is trivial, i.e.⋂
α∈B

Gα = 1.

The base size of G, denoted by b(G), is the minimal size of a base for G.

Note that Ω is always a base for G, so every permutation group has at least one base. Also
note that if B is a base for G then so is Bx = {αx | α ∈ B} for all x ∈ G.

Examples 5.2.

(i) If G = Sn and Ω = {1, . . . ,n}, then b(G) = n−1. Similarly, b(G) = n−2 for the standard action
of G = An.

(ii) At the other extreme, b(G) = 1 if and only if G has a regular orbit.

(iii) If G = D2n and Ω is the set of vertices of a regular n-gon, then b(G) = 2.

(iv) If G is a Frobenius group then b(G) = 2.

(v) Let V be a finite-dimensional vector space and set G = GL(V ) and Ω = V . Then B ⊆ Ω is a
base if and only if B contains a basis of V . In particular, b(G) = dimV .

(vi) Similarly, b(G) = dimV +1 if G = PGL(V ) and Ω is the set of 1-dimensional subspaces of V .

(vii) If G = HV 6 AGL(V ) is affine, then b(G) = b(H)+1.

Remark 5.3. A base B⊆Ω is minimal if no proper subset of B is a base, i.e.
⋂

α∈B\{β}Gα 6= 1 for all
β ∈ B. Of course, B is minimal if |B|= b(G), but there may be larger minimal bases. For example,
consider the natural action of G = Sm on the set of 2-element subsets of {1, . . . ,m}, where m ≡ 1
(mod 12). Then

B1 = { {1,2},{2,3}, {4,5},{5,6}, . . . }

B2 =

{
{1,2},{3,4}, {5,6},{7,8}, . . .
{1,3} {5,7}

}
are both minimal bases for G (for example, if we remove {1,2} from B2, then the transposition
(2,m) fixes all the remaining sets), and |B1|= 2

3 (m−1), |B2|= 3
4 (m−1). In fact, b(G) = 2

3 (m−1).

Bases arise naturally in several different contexts:

1. Abstract group theory. Let G be a finite group and let H be a core-free subgroup of G, so⋂
x∈G

Hx = 1
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and G acts faithfully on the set of cosets Ω=G/H, so we may view G as a permutation group
on Ω. In this context, b(G) is the size of the smallest subset S⊆ G such that⋂

x∈S

Hx = 1.

In particular, b(G) = 2 if and only if H ∩Hx = 1 for some x ∈ G.

2. Permutation group theory. Let G be a permutation group on a set Ω, and let B be a base for G.
Observe that if x,y ∈ G then

α
x = α

y for all α ∈ B ⇐⇒ xy−1 ∈
⋂

α∈B

Gα ⇐⇒ x = y, (5.1)

in other words, two elements of G are equal if and only if they have the same effect on a
base. Therefore, if |Ω| is finite then |G|6 |Ω||B|, so

|G|6 |Ω|b(G) (5.2)

and we can use an upper bound on b(G) to bound the order of G. This method was used to
obtain many of the bounds on the order of a primitive group that we highlighted in Section
3.4.1. We will say more about this in Section 5.2.

3. Computational group theory. The concept of a base and strong generating set (BSGS) was intro-
duced by Sims [85] in the early 1970s, and it plays a major role in the computational study
of permutation groups. Given a base B = {α1, . . . ,αb} for G, we obtain a subgroup chain

G = G0 > G1 > G2 > . . .> Gb−1 > Gb = 1 (5.3)

where Gi =
⋂i

j=1 Gα j . A subset S of G is a strong generating set for G (with respect to B) if
Gi = 〈S∩Gi〉 for all i. A BSGS for G provides an efficient way to encode the elements of G;
by (5.1), each element of G is uniquely determined by its action on B, so it can be encoded
as a |B|-tuple, rather than a |Ω|-tuple. In addition, a BSGS can be used to compute the order
of G, and to test membership in G; basic routines that form the basis of more sophisticated
algorithms. The underlying philosophy here is the following:

small bases  faster, more efficient algorithms.

As a consequence, bases are essential in the familiar computer packages GAP and MAGMA.
See [83, Section 4] for more details.

4. Graph theory. Let Γ be a graph with vertices V and automorphism group G = Aut(Γ) 6
Sym(V ). Then

b(G) = the fixing number of Γ

= the determining number of Γ

= the rigidity index of Γ

is a well-studied graph invariant. See the excellent survey article by Bailey and Cameron [5]
for further details and much more.

Remark 5.4. As remarked in Section 3.5, results on bases have played an important role in recent
efforts to classify certain families of transitive permutation groups. More precisely, if G6 Sym(Ω)
is non-Frobenius and 3

2 -transitive, then b(G) > 2. Indeed, if b(G) = 2 then Gα has a regular sub-
orbit, so G is 3

2 -transitive if and only if Gα,β = 1 for all β ∈ Ω\{α}, in which case G is Frobenius.
Similarly, if G is almost simple and extremely primitive then b(G)> 2 (this is using the fact that no
maximal subgroup of an almost simple group has prime order). Consequently, the proofs of the
main theorems in [6, 24, 25] use recent work towards a classification of the almost simple groups
G with the extremal b(G) = 2 property.

For the groups in Examples 5.2, it is easy to compute the exact base size. However, in general
this is very difficult (indeed, algorithmically, this is known to be an NP-hard problem; see [9]) and
we are often interested in obtaining bounds, with a particular focus on upper bounds.
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Let G 6 Sym(Ω) be a permutation group on a finite set Ω and let B = {α1, . . . ,αb(G)} ⊆ Ω be a
base. As in (5.3), B determines a stabiliser chain (with b = b(G)), and the minimality of B implies
that all the inclusions in this chain are proper. Therefore, |G|> 2b(G), and combining this with (5.2)
above, we deduce that

log |G|
log |Ω|

6 b(G)6 log |G| (5.4)

Notation. In (5.4) and throughout this section, all logarithms are with respect to the base 2.

Examples 5.5. It is easy to give examples of transitive groups G such that b(G) is at either end of
the range given in (5.4):

(i) Let G = Sn and Ω = {1, . . . ,n}. Then

b(G) = n−1 < 2
log |G|
log |Ω|

(ii) Let G = Z2 o Zk = Zk
2 o Zk and Ω = {1, . . . ,2k} (the standard action of the wreath product);

G < S2k is a subgroup of permutations that preserve the partition

Ω = {1,2}∪{3,4}∪ · · ·∪{2k−1,2k}.

Then
b(G) = k = log |G|− logk >

1
2

log |G|

Note that G is primitive in (i) and imprimitive in (ii). Therefore, it is natural to ask whether
or not we can improve the upper bound on b(G) in (5.4) if we restrict our attention to primitive
groups. As we shall see in the next section, this is a very active area of current research.

5.2 Bounds for primitive groups

Let G be a primitive permutation group of degree n. A classical problem in permutation group
theory is to find an upper bound on b(G) in terms of n (as noted above, this yields an upper bound
on |G| in terms of n, which is the problem we discussed earlier in Section 3.4.1). We know that
b(G) = n− 1 if G = Sn, and similarly b(G) = n− 2 if G = An, so let us assume G 6= An,Sn. In this
situation, one of the earliest results is the following theorem:

Theorem 5.6 (Bochert, 1889). Let G 6 Sym(Ω) be a primitive permutation group of degree n not con-
taining An. Then b(G)6 n/2.

Proof. Seeking a contradiction, suppose B is a base of minimal size and |B|> n/2. Let C = Ω\B, so
|C|< |B| and thus C is not a base. In particular, there exists 1 6= x ∈

⋂
α∈C Gα , so supp(x)⊆ B, where

we recall that
supp(x) = {α ∈Ω | αx 6= α}

is the set of points in Ω moved by x. Fix α ∈ supp(x). By minimality, B\{α} is not a base, so there
exists 1 6= y ∈

⋂
β∈B\{α}Gβ , i.e. supp(y) ⊆ Ω \ (B \ {α}) = C∪{α}. Since B is a base, supp(y)∩B is

non-empty, so α ∈ supp(y) and thus supp(x)∩ supp(y) = {α}. Therefore, G contains a 3-cycle (see
Exercise 5), so Theorem 3.20 implies that G is An or Sn. We have reached a contradiction.

The next major advance was established by Babai [3, 4], almost 100 years later:

Theorem 5.7 (Babai, 1981). Let G be a primitive permutation group of degree n not containing An.

(i) If G is not 2-transitive then b(G)< 4
√

n logn.

(ii) If G is 2-transitive then b(G)< c
√

logn for some absolute constant c.

It is remarkable that Babai’s proof is ‘elementary’ in the sense that it is CFSG-free. However,
by appealing to the Classification, Liebeck [64] proved the following stronger result, which is
essentially best possible (note that we allow k = 1 in part (ii), in which case G is almost simple).
The final statement yields the bound |G|< nc

√
n, as recorded in Theorem 3.17.
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Theorem 5.8 (Liebeck, 1984). Let G be a primitive permutation group of degree n not containing An.
Then either

(i) b(G)< 9logn; or

(ii) G6 H oSk is a product-type group, where H 6 Sym(Γ) is a primitive group with socle Am, and Γ is
the set of d-element subsets of {1, . . . ,m}.

In particular, b(G)< c
√

n for some absolute constant c.

Sketch proof.
Main steps. The proof is accomplished in three steps, using the familiar combination of the
O’Nan-Scott Theorem, CFSG and structural information on the simple groups themselves:

1. Use O’Nan-Scott to reduce the problem to almost simple groups.

2. Show that if G is almost simple, then either |G|< n9, or G is standard in the following sense:

• Either Soc(G) = Am and Ω is an orbit of subsets or partitions of {1, . . . ,m}; or

• Soc(G) =Cl(V ) is a classical group and Ω is an orbit of subspaces of V .

To establish the bound |G|< n9, we need information on the maximal subgroups of G (recall
that n = |G : Gα | and Gα is a maximal subgroup of G).

3. If |G|< n9 then (5.4) implies that b(G)6 log |G|< 9logn, as required. For the standard groups,
it is not too difficult to write down a base of the required size.

O’Nan-Scott reduction. Let’s look more closely at the first step. Set H = Gα and N = Soc(G) = T k

for some simple group T . First assume N is regular, so G = HN is a semidirect product and the
action of G on Ω is isomorphic to the action of G on N given by

ahn = (h−1ah)n

for all h ∈ H and a,n ∈ N (see Section 2.5). Note that CH(N) = 1 since the action is faithful. Let
{1,n1, . . . ,nt} be a generating set for N (where 1 is the identity element of N); we claim that this is
a base for G. Suppose g ∈G fixes each element in this set. Write g = xy with x ∈H and y ∈ N. Since
1xy = 1, it follows that y= 1, so the relation nxy

i = ni implies that x∈CH(ni). Therefore, x∈CH(N) = 1
and thus x = 1. This justifies the claim. Since every finite simple group is 2-generated, we can
choose t 6 2k, so

b(G)6 2k+16 2logn+1

(here n = |N| = |T |k) and the result follows. This eliminates affine groups and twisted wreath
products, so we may assume G is either product-type or diagonal-type.

Product-type groups. Suppose G 6 H oP is a product-type group, where H 6 Sym(Γ) is almost
simple with socle T , P 6 Sk is transitive (with k > 2), and G acts on Ω = Γk with the product
action (see (2.2)). Write |Γ| = m, so n = mk. Assuming that the theorem holds for almost simple
groups, we may assume that b(H) < 9logm. Let {γ1, . . . ,γb} ⊆ Γ be a base for H with b < 9logm.
Set αi = (γi, . . . ,γi) ∈Ω, 16 i6 b, and define βi ∈Ω by setting

β1 = (δ ,γ, . . . ,γ), β2 = (γ,δ ,γ, . . . ,γ), . . . , βk−1 = (γ, . . . ,γ,δ ,γ)

where γ and δ are fixed distinct elements of Γ. Suppose (h1, . . . ,hk)p−1 fixes each αi. Then

(γi, . . . ,γi) = (γi, . . . ,γi)
(h1,...,hk)p−1

= (γ
h1p
i , . . . ,γ

hkp
i )

and thus γ
h j
i = γi for each i, so h j = 1 for each j. Finally, if (1, . . . ,1)p−1 fixes βi, then p fixes

i ∈ {1, . . . ,k}, so we deduce that {α1, . . . ,αb,β1, . . . ,βk−1} is a base for G. This gives

b(G)6 b+ k−1 < 9logm+ k−1 < 9logn.
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Diagonal-type groups. Finally, let us eliminate diagonal-type groups. Define W and D as in (3.1),
so

W = {(a1, . . . ,ak)π ∈ Aut(T ) oSk | Inn(T )a1 = Inn(T )ai for all i}
D = {(a, . . . ,a)π ∈ Aut(T ) oSk} ∼= Aut(T )×Sk

and let G6W be a diagonal-type group. We will assume that k > 3 (the case k = 2 is similar). We
may identify Ω with the set of right cosets W/D, in which case the action of G on Ω is given by

(D(a1, . . . ,ak)π)
(b1,...,bk)σ = D(a1b1π , . . . ,akbkπ )πσ

(see (3.2)). Write T = 〈x,y〉 and define the following elements in Ω:

α = D(1, . . . ,1), β1 = D(x,1, . . . ,1), . . . , βk = D(1, . . . ,1,x)

and
γ1 = D(y,1, . . . ,1), . . . , γk = D(1, . . . ,1,y).

We claim that {α,β1, . . . ,βk,γ1, . . . ,γk} is a base for G. Suppose g = (b1, . . . ,bk)σ ∈ G fixes this set
pointwise. Since g fixes α , we have

D(1, . . . ,1) = D(1, . . . ,1)g = D(b1, . . . ,bk)σ

and thus g = (b, . . . ,b)σ ∈ D. If σ = 1 then

β1 = β
g
1 = D(xb,b, . . . ,b), γ1 = γ

g
1 = D(yb,b, . . . ,b),

so (xbx−1,b, . . . ,b) and (yby−1,b, . . . ,b) are in D and thus b centralises T , so b = 1 (by Proposition
2.4(i)) and g = 1. Finally, suppose σ 6= 1, say 1σ 6= 1 for example. Then β1 = β

g
1 = D(xb,b, . . . ,b)σ ,

so
(xb,b, . . . ,b)σ · (x−1,1, . . . ,1) = (xb,b, . . . ,b,bx−1,b, . . . ,b)σ ∈ D

(here bx−1 is the j-th coordinate, where j = 1σ−1 6= 1) and thus xb = b, which is a contradiction.
This justifies the claim, so

b(G)6 2k+1 < 9logn

as required.

Remark 5.9. The final statement in Liebeck’s theorem is essentially best possible since there are
primitive groups G with b(G) = O(

√
n). For example, if G = Sm and Ω is the set of 2-subsets of

{1, . . . ,m} then |Ω|= 1
2 m(m−1) = n and we have already observed that b(G)≈ 2

3 m = O(
√

n). Also
note that the estimate in (i) is also best possible (up to a small constant); for example, the standard
action of G = AGLd(2) has base size b(G) = d +1 = logn+1.

Of course, Liebeck’s result holds for any primitive group, but it is possible to do better if we
focus on specific families of primitive groups. For example, a striking theorem of Seress [82] states
that b(G)6 4 for any soluble primitive group G (moreover, equality holds for infinitely many such
G), and in the next section we will see that better bounds have been established for almost simple
primitive groups.

To close this discussion, let us return to the bounds in (5.4). As noted in Examples 5.5, we can
find transitive groups G such that b(G) is close to either the upper or lower bound. However, one
of the main open problems in this area asserts that if G is primitive, then b(G) is ‘small’ in the
following sense (see [80, p.207]):

Conjecture 5.10 (Pyber, 1993). There is an absolute constant c such that

b(G)6 c
log |G|
logn

for any primitive group G of degree n.

33



Note that primitivity is essential. For instance, if we take k = 2m in Examples 5.5(ii) then
G = Z2 oZk < S2k is transitive and

b(G) = 2m,
log |G|
logn

=
2m +m
m+1

.

The main approach to Pyber’s conjecture has been via the O’Nan-Scott Theorem, and it has
been verified for several families of primitive groups. We give a brief summary:

1. Almost simple. We will focus on bases for almost simple groups in the next section. The
analysis of such groups can be partitioned into two cases; the so-called standard and non-
standard groups (see Definition 5.14 below). Pyber’s conjecture for non-standard groups was
established by Liebeck and Shalev [69], using probabilistic methods (see Theorem 5.17); and
the standard groups were handled by Benbenishty [7], who constructed explicit bases of an
appropriate size.

2. Diagonal-type. Let G6 Sym(Ω) be a primitive diagonal-type group of degree n, so

T k 6 G6 T k.(Out(T )×PG)

where k> 2, T is a nonabelian simple group, n = |T |k−1 and PG 6 Sk is the group induced by
the conjugation action of G on the k factors of T k (recall that either PG is primitive, or k = 2
and PG = 1). Here the main result is a recent theorem of Fawcett [40]:

Theorem 5.11 (Fawcett, 2013). Pyber’s conjecture holds for diagonal groups. More precisely,

b(G)6

⌈
log |G|
logn

⌉
+2

In fact, b(G) = 2 if PG 6= Ak,Sk.

3. Product-type and twisted wreath products. It turns out that Pyber’s conjecture for twisted
wreath products quickly follows from the product-type case (basically, a twisted wreath
product can be embedded in an appropriate product-type group).

Let G 6 H oP be a primitive product-type group on Ω = Γk, where H 6 Sym(Γ) is primitive
(almost simple or diagonal-type) with socle S, and P6 Sk is the transitive group induced by
G on the k factors of Soc(G) = T k. Recall that the product action of G on Ω is given by

(γ1, . . . ,γk)
(h1,...,hk)p−1

= (γ
h1p
1p , . . . ,γ

hkp
kp )

Pyber’s conjecture for product-type groups has recently been established in [26], and the
following theorem is a key ingredient in the proof (see [26, Theorem 3.1], and recall that all
logarithms are base-2):

Theorem 5.12 (Burness & Seress, 2013). There exists an absolute constant c such that for any
transitive group P6 Sym(∆) of degree k, there exist η subsets of ∆ such that

η 6 c
(

1+
log |P|

k

)
and the intersection of the setwise stabilisers of these subsets in P is trivial.

This is essentially best possible, e.g. if P = Sk then at least dlogke > 1
k log |P| subsets are

required, e.g. if k = 8 take {1,2,3,4}, {1,2,5,6} and {1,3,5,7}.
The proof of Theorem 5.12 for primitive groups is relatively straightforward, using earlier
work on so-called distinguishing partitions for permutation groups. The imprimitive case is
more difficult and highly combinatorial, using colourings of an associated structure tree for
P that encodes a chain of block systems for P.

Let’s briefly explain the relevance of Theorem 5.12, in the case where H is almost simple.
Let {γ1, . . . ,γb} ⊆ Γ be a base for H with b = b(H), and set αi = (γi, . . . ,γi) ∈ Ω = Γk. If g =
(h1, . . . ,hk)p ∈ G fixes each αi then each h j fixes γ1, . . . ,γb, so g = (1, . . . ,1)p.
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Since P6 Sk is transitive, let X = {X1, . . . ,Xa} be a set of subsets of ∆ = {1, . . . ,k} provided by
Theorem 5.12, where

a6 c1

(
1+

log |P|
k

)
for some absolute constant c1. Set r = blog |Γ|c and assume a > r (for convenience). Let
Y1∪ . . .∪Ys be the common refinement of the partitions {Xi∪ (∆\Xi) | 16 i6 r}; this is an s-part
partition of ∆, where s 6 2r 6 |Γ|. Choose distinct γ1, . . . ,γs ∈ Γ and define β ∈ Ω so that all
the coordinates in β corresponding to points in Yi are equal to γi. Now, if g = (1, . . . ,1)p ∈ G
fixes β then p fixes each Yj, so p fixes each Xi with 16 i6 r. In this way, we can define a set
of points {β1, . . . ,βda/re} in Ω with the property that if g = (1, . . . ,1)p ∈ G fixes each βi then p
stabilises each subset in X , so p = 1.

We now have a base {α1, . . . ,αb,β1, . . . ,βda/re} for G, where

a6 c1

(
1+

log |P|
k

)
, r = blog |Γ|c, b = b(H)6 c2

log |H|
log |Γ|

for absolute constants c1,c2 (since Pyber’s conjecture holds for almost simple groups). Then

b(G)6 da/re+b6
⌈

c1
1

blog |Γ|c
+ c1

log |P|
kblog |Γ|c

⌉
+ c2

log |H|
log |Γ|

6 c3
log |P|
logn

+ c4
log |H|k

logn

6 c5
log |G|
logn

(Here we are using the fact that |H| 6 |Aut(S)| 6 |S|2 (H is almost simple with socle S), so
|G|2 > |H|k|P|.)

4. Affine-type. Let G = HV 6 AGL(V ) be a primitive affine-type group, where V = (Fp)
d and

H = G0 6 GL(V ) is irreducible. In this situation, Pyber’s conjecture is still open, but several
special cases have been settled:

Conditions Bound Ref.
Seress, 1996 G soluble b(G)6 4 [82]
Gluck & Magaard, 1998 (p, |H|) = 1 b(G)6 95 [49]
Halasi & Podoski, 2012 (p, |H|) = 1 b(G)6 3 [54]
Liebeck & Shalev, 2002 primitive b(G)6 18log |H|/n+ c [70, 71]

Here the theorem of Liebeck and Shalev deals with all the affine-type primitive groups G =
HV , where H acts primitively on V (as a linear group). In other words, H does not preserve
a nontrivial direct sum decomposition of V .

Remark 5.13. To summarise, in order to complete the proof of Pyber’s base size conjecture we
may assume that G = HV is an insoluble affine-type group, where p divides |H|, and H acts im-
primitively as a linear group on V .

5.3 Almost simple groups & probabilistic methods

Let G6 Sym(Ω) be a primitive almost simple permutation group, with socle T and point stabiliser
H = Gα . As noted above, it is natural to partition the analysis of bases for such groups into two
cases, according to the following definition:

Definition 5.14. We say that G is standard if one of the following holds:

(i) T = Am and Ω is an orbit of subsets or partitions of {1, . . . ,m};

(ii) G is a classical group in a subspace action, i.e. Ω is an orbit of subspaces, or pairs of subspaces
of complementary dimension, of the natural T -module.
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Otherwise, G is non-standard.

In other words, G is standard if and only if T = Am and H is intransitive or imprimitive on
{1, . . . ,m}, or T = Cl(V ) is a classical group and H acts reducibly on V . In a meaningful sense,
‘most’ almost simple primitive groups are non-standard.

In general, if G is standard then H is a ‘large’ subgroup of G (a maximal parabolic subgroup, for
example), which implies that |G| is large compared to |Ω|. Indeed, it is easy to see that the order of
a standard group is not bounded above by a fixed polynomial function of its degree (in general).
For example, if we take the standard action of G = PGLn(q) then |G| ∼ qn2−1 and |Ω| ∼ qn−1. In
view of (5.4), this implies that the base size of a standard group can be arbitrarily large (in the
previous example, b(G) = n+1). Bases for standard groups have mainly been investigated using
constructive methods; see [7, 8, 53, 57], for example.

For now on, let G 6 Sym(Ω) be a non-standard group of degree n (with socle T and point
stabiliser H as before). Our starting point is a theorem of Cameron, which states that there is
an absolute constant c such that |G| 6 nc for any such group G. In particular, the order of a
standard group is bounded above by a fixed polynomial of its degree. In [64], Liebeck shows
that Cameron’s theorem holds with c = 9, and this was later extended by Liebeck and Saxl, who
showed that c = 5 (excluding (G,n) = (M23,23) and (M24,24)). Given the existence of such a con-
stant, Cameron made the following conjecture:

Conjecture 5.15 (Cameron, 1992). There is an absolute constant c such that b(G) 6 c for any non-
standard permutation group G.

Shortly afterwards, an even stronger conjecture was formulated (see [33]):

Conjecture 5.16 (Cameron & Kantor, 1993). There is an absolute constant c such that if G 6 Sym(Ω)
is a non-standard permutation group then the probability that a randomly chosen c-tuple in Ω is a base for
G tends to 1 as |G| tends to infinity.

This conjecture was proved by Liebeck and Shalev [69], using probabilistic methods (for alter-
nating and symmetric groups, Cameron and Kantor showed that c = 2):

Theorem 5.17 (Liebeck & Shalev, 1999). The Cameron-Kantor Conjecture is true.

In order to discuss the proof of this theorem, we need some additional notation. The fixed point
ratio of x ∈ G, denoted by fpr(x), is the proportion of points in Ω that are fixed by x, i.e.

fpr(x) =
|CΩ(x)|
|Ω|

=
|xG∩H|
|xG|

.

In other words, fpr(x) is the probability that a randomly chosen element of Ω is fixed by x.
The connection between fixed point ratios and base sizes arises as follows. For c∈N, let Q(G,c)

be the probability that a randomly chosen c-tuple of points in Ω is not a base for G, so

b(G)6 c ⇐⇒ Q(G,c)< 1.

Of course, a c-tuple in Ω fails to be a base if and only if it is fixed by an element x ∈ G of prime
order, and we note that the probability that a random c-tuple is fixed by x is at most fpr(x)c. Let
P be the set of elements of prime order in G, and let x1, . . . ,xk be a set of representatives for the
distinct G-classes of elements in P . Fixed point ratios are constant on conjugacy classes, so

Q(G,c)6 ∑
x∈P

fpr(x)c =
k

∑
i=1
|xG

i | · fpr(xi)
c =: Q̂(G,c). (5.5)

In particular, we can use upper bounds on fixed point ratios to bound Q̂(G,c) from above.

Example 5.18. We claim that b(G) 6 500 if T is an exceptional group of Lie type over Fq. To see
this, we use a very general theorem of Liebeck and Saxl [68], which implies that fpr(x)6 4/3q for
all non-identity elements x ∈ G. Now |G|6 |Aut(E8(q))|< q249 and thus

Q(G,500)6 Q̂(G,500)6
(

4
3q

)500 k

∑
i=1
|xG

i |<
(

4
3q

)500

|G|<
(

4
3q

)500

q249 < q−1.

The claim follows. (In fact, this very crude approximation shows that b(G)6 426.)
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To deal with non-standard classical groups of arbitrarily large rank, we need a better upper
bound on fpr(x). Indeed, the key ingredient is [69, Theorem (?)], which states that there is an
absolute constant ε > 0 such that

fpr(x)< |xG|−ε (5.6)

for any non-identity element x ∈ G in any non-standard classical group G (the proof involves a
detailed analysis of the maximal subgroups of the finite classical groups, following Aschbacher’s
subgroup structure theorem [2]). Note that the non-standard condition is essential. For example,
in the standard action of G=PGLn(q) we have fpr(x)≈ q−1 and |xG| ≈ q2n−2 for x= diag(λ ,1, . . . ,1)∈
G (modulo scalars).

Write T =Cln(q) (e.g. PSLn(q), PSpn(q) etc.). In order to apply the above bound (5.6), we need
two basic facts:

1. G has at most q4n conjugacy classes of elements of prime order.

2. |xG|> qn/2 for all x ∈ G of prime order.

Set c = d11/εe. Then

Q̂(G,c) =
k

∑
i=1
|xG

i | · fpr(xi)
c <

k

∑
i=1
|xG

i |−10 6 k · (qn/2)−10 6 q−n

and thus Q(G,c)→ 0 as |G| → ∞, which completes the proof of the Cameron-Kantor Conjecture.
The proof of Theorem 5.17 yields an undetermined constant c = d11/εe. This led Cameron

to make the following conjecture (see [30, p.122]), which suggests a remarkable dichotomy for
almost simple primitive groups: either the base size can be arbitrarily large (standard groups), or
there exists an extremely small base (non-standard groups).

Conjecture 5.19 (Cameron, 1999). Let G be a non-standard permutation group. Then b(G) 6 7, with
equality if and only if G = M24 in its natural action on 24 points.

This conjecture is proved in a sequence of papers [16, 19, 22, 23], using similar probabilistic
methods. In fact, we prove a slightly stronger result:

Theorem 5.20 (Burness et al., 2007–2011). Cameron’s Conjecture is true. Moreover, if G 6 Sym(Ω) is
non-standard then the probability that a random 6-tuple in Ω forms a base for G tends to 1 as |G| tends to
infinity.

One of the key ingredients in the proof for classical groups is an explicit version of (5.6), which
roughly states that ε ≈ 1/2 is optimal. In order to use this, write T =Cln(q) and for t ∈ R, set

ηG(t) =
k

∑
i=1
|xG

i |−t ,

where the xi represent the distinct G-classes of elements of prime order in G. If n > 6, then careful
calculation reveals that ηG(1/3)< 1. Therefore, by combining this with the upper bound fpr(x)<
|xG|−1/2+1/n, we deduce that

Q̂(G,4)<
k

∑
i=1
|xG

i |1+4(− 1
2+

1
n ) 6 ηG(1/3)< 1

if n > 6, and thus b(G) 6 4. In this way, we obtain the following result for non-standard classical
groups (see [16, Theorem 1]):

Theorem 5.21 (Burness, 2007). Let G be a non-standard classical group. Then either b(G) 6 4, or
G = PSU6(2).2, H = PSU4(3).22 and b(G) = 5.

Remark 5.22. Some additional comments on bases for almost simple groups:

(i) If T is an alternating or sporadic group, then the exact value of b(G) has been calculated in all
cases. For example, if T = An then [19, Theorem 1.1] implies that b(G) = 2 if n > 12 (if G = A12
and Gα =M12, then b(G)= 3). For symmetric and alternating groups, the proof uses Maróti’s
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upper bound on |H| in Theorem 3.18, together with a theorem of Guralnick and Magaard
[49] on the minimal degree of H (see Section 3.4.3), which translates into a lower bound on
|xG| for non-identity elements x ∈ H. This is useful, because Q̂(G,2) < |H|2 max1 6=x∈H |xG|−1.
The proof for sporadic groups relies heavily on computational methods.

(ii) The proof of Theorem 5.20 reveals that there are infinitely many exceptional groups with
b(G)> 5, and very recently it has been shown that there are also infinitely many with b(G) =
6 (see [21, Theorem 11]).

(iii) One of the ultimate aims is to compute the exact value of b(G) for all non-standard groups.
This is an ongoing project of Burness, Guralnick and Saxl (see [20], for example). There is
particular interest in the special case b(G) = 2.

More generally, one might hope to classify all the primitive permutation groups with b(G) =
2. Here the affine groups are particularly interesting; if G = HV is an affine group, then
b(G)= 2 if and only if the irreducible group H 6GL(V ) has a regular orbit on V . Determining
the linear groups H with this property is a basic problem in the representation theory of
finite groups.

5.4 Bases for algebraic groups

Up to now, we have only considered bases in the context of finite permutation groups. In this final
section, we briefly report on recent work of Burness, Guralnick and Saxl [21], which extends the
study of bases to simple algebraic groups over algebraically closed fields. In some situations, by
taking the fixed points of a suitable Frobenius morphism, we can use results on bases for algebraic
groups to shed light on bases for the corresponding finite groups of Lie type.

Let G be a simple affine algebraic group over an algebraically closed field K of characteristic
p > 0, e.g. SLn(K), Spn(K), E8(K), etc. Consider the natural action of G on the primitive coset
variety Ω = G/H, where H is a closed maximal subgroup of G (here H is closed with respect to the
Zariski topology on G). We define three base-related measures that arise naturally in this context:

(i) As before, the exact base size, denoted b(G), is the smallest integer c such that Ω contains c
points with trivial pointwise stabiliser.

(ii) The connected base size, denoted b0(G), is the smallest integer c such that Ω contains c points
whose pointwise stabiliser is finite.

(iii) The generic base size, denoted b1(G), is the smallest integer c such that the product variety
Ωc = Ω×·· ·×Ω (c factors) contains a non-empty open subvariety Λ and every c-tuple in Λ

is a base for G.

Evidently, we have
b0(G)6 b(G)6 b1(G).

In [21], these base-related measures are calculated for all primitive actions of any simple algebraic
group G, with the precise values computed in almost all cases. For example, the next result can be
viewed as a sharpened algebraic group analogue of Theorem 5.20 (here Pi denotes the maximal
parabolic subgroup of G that corresponds to deleting the i-th node in the Dynkin diagram of G):

Theorem 5.23. Let G be a simple algebraic group over an algebraically closed field and let Ω be a primitive
G-variety with point stabiliser H. Assume G is not a classical group in a subspace action. Then b1(G)6 6,
with equality if and only if (G,H) = (E7,P7), (E6,P1) or (E6,P6).

As an example of the detailed results obtained in [19], we record the following theorem for
non-subspace actions of classical algebraic groups:

Theorem 5.24. Let G be a simple classical algebraic group in a primitive non-subspace action with point
stabiliser H. Assume p 6= 2. Then either b0(G) = b(G) = b1(G) = 2, or one of the following holds:

(i) b0(G) = b(G) = b1(G) = b > 2 and (G,H,b) is recorded in Table 5.1;
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G Type of H Conditions b
SLn GLn/2 oS2 n> 4 3

Spn n = 6 4
Spn n> 8 3

Spn Spn/2 oS2 n> 8 3
Spn/3 oS3 n = 6 3

SOn GLn/2 n> 10 3
G2 n = 7 4

Table 5.1: Values of b in Theorem 5.24(i)

(ii) b0(G) = b(G) = 2, b1(G) = 3 and

(G,H) = (SL2,GL1 oS2), (SLn,SOn), (Spn,GLn/2) or (SOn,On/2 oS2).

Let c> 2 be an integer. The expression

Q(G,c) =
c

c−1
· sup

x∈P

{
dim(xG∩H)

dimxG

}
plays an important role in the proofs of the main results in [19], where P denotes the set of
elements of prime order in H (including all nontrivial unipotent elements if p = 0). Indeed, a key
theorem states that if H0 is reductive, then

Q(G,c)< 1 =⇒ b1(G)6 c.

This is an algebraic group analogue of the implication Q̂(G,c)< 1 =⇒ b(G)6 c for finite permu-
tation groups. Similarly, the lower bound

b0(G)>
dimG
dimΩ

=
dimG

dimG−dimH

is the analogue of the lower bound in (5.4). We also show that b1(G)6 b0(G)+1.
Finally, let’s comment on the connection between bases for algebraic groups and the corre-

sponding finite groups. Let p be a prime, let G be a simple algebraic group over the algebraic
closure Fp, and let σ be a Frobenius morphism of G such that the set of fixed points Gσ is a finite
group of Lie type over Fq, for some p-power q. If H is a closed positive-dimensional σ -stable
subgroup of G then we can consider the action of Gσ on the set of cosets of Hσ in Gσ . We write
b(Gσ ) for the base size of Gσ in this action. In addition, for a positive integer c, let P(Gσ ,c) be the
probability that c randomly chosen points in Gσ/Hσ form a base for Gσ . We define the asymptotic
base size of Gσ , denoted by b∞(Gσ ), to be the smallest value of c such that P(Gσ ,c) tends to 1 as q
tends to infinity.

In [19], various relations between the base-related measures

b(G), b0(G), b1(G), b(Gσ ), b∞(Gσ )

are investigated. For example, a straightforward application of the Lang-Weil estimates in alge-
braic geometry shows that b1(G) = b∞(G), and we also establish the bound b0(G)6 b(Gσ ) if q > 2.
In future work, one of the main aims is to use the results in [19] to determine the precise base size
of any almost simple primitive group of Lie type.
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6 Exercises

Unless stated otherwise, G6 Sym(Ω) is a permutation group on a finite set Ω, and α ∈Ω.

1. Let G be a transitive abelian permutation group. Prove that G is regular.

2. Let K be a subgroup of a transitive group G. Prove that G=Gα K if and only if K is transitive.

3. Prove that the rank of a transitive group G is well defined (i.e. it is independent of the choice
of α).

4. Let G be a finite group acting on a set Ω, and let k be the number of orbits of G. Prove the
Orbit-Counting Lemma, that is, show that

1
|G| ∑x∈G

|CΩ(x)|= k.

5. Let G 6 Sym(Ω) be a permutation group of degree n > 3 and suppose x,y ∈ G are elements
such that supp(x)∩ supp(y) = {α}. Show that the commutator [x,y] is a 3-cycle.

6. Here we consider the transitivity of the standard actions of PSL2(q) and PGL2(q).

(i) Prove that the standard action of PSL2(q) is 2-transitive, and 3-transitive if and only if
q is even.

(ii) Prove that the standard action of PGL2(q) is 3-transitive, and 4-transitive if and only if
q = 3.

7. Let G = AGLd(p), where d > 2. Prove that the standard action of G is 3-transitive if and only
if p = 2, and 4-transitive if and only if (d, p) = (2,2).

8. Let G and H be permutation groups on a set Ω. Prove that G and H are permutation isomor-
phic if and only if G and H are conjugate as subgroups of Sym(Ω).

9. Let H 6 Sym(Γ) and K 6 Sym(∆) be transitive groups. Suppose there is an isomorphism
ψ : H → K such that Hγ ψ = Kδ for some γ ∈ Γ, δ ∈ ∆. Prove that H and K are permutation
isomorphic.

10. Let H 6 Sym(Γ) and K 6 Sym(∆) be permutation groups, where |Γ|, |∆|> 2 and ∆= {1, . . . ,n}.
Prove that the standard and product actions of H oK are faithful.

11. Let G be a finite group. Prove that {(g,g) | g∈G} is a maximal subgroup of G×G if and only
if G is simple.

12. If G 6 Sym(Ω) is transitive, prove that G is primitive if and only if Gα is a maximal sub-
group of G. Deduce that if m > 4 then Sm acts primitively on the set of 2-element subsets of
{1, . . . ,m}.

13. Let G6 Sym(Ω) be a diagonal-type group. Prove that G is not 2-transitive.

14. Let G6 Sym(Ω) be a transitive permutation group and consider the natural coordinatewise
action of G on Ω×Ω. Let ∆ be an orbit of G in this induced action; the diagonal orbit is
{(α,α) | α ∈ Ω}. The orbital graph of ∆ is the digraph with vertex set Ω and an edge from α

to β for each (α,β ) ∈ ∆. Prove that G is primitive on Ω if and only if all non-diagonal orbital
graphs are connected.

15. Prove that if G 6 Sym(Ω) is primitive and α,β ∈ Ω are distinct points, then either G =
〈Gα ,Gβ 〉, or G is regular of prime degree.

16. Prove that there are precisely 68 diagonal-type primitive groups of degree less than 4096.

17. Let G 6 Sym(Ω) be a primitive permutation group of degree n containing a 2-cycle. Prove
that G = Sn.

18. Let G 6 Sym(Ω) be a primitive permutation group of degree n containing a 3-cycle. Define
a relation ∼ on Ω as follows:

α ∼ β ⇐⇒ α = β , or there exists a 3-cycle (α,β ,γ) ∈ G

Prove that ∼ is a G-congruence, and deduce that G = An or Sn.
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19. Prove that the action of Sn on the set of k-element subsets of {1, . . . ,n} (with k 6 n/2) is 3
2 -

transitive if and only if (n,k) = (7,2).

20. As in Section 3.4.2, let

E = {n ∈ N | there exists a primitive group of degree n, other than Sn or An}.

Show that E ∩{1, . . . ,10}= {5,6,7,8,9,10}.

21. Let G be a sharply 2-transitive group of degree n> 2. Prove that δ (G) = 1
n . Also prove that

any two derangements in G are conjugate.

22. Let dn = |∆(Sn)| be the number of derangements in Sn (with respect to the standard action of
Sn on {1, . . . ,n}, n> 2). Without using Montmort’s formula, prove that

dn = (n−1)(dn−1 +dn−2)

and use this to derive the recurrence relation

dn = ndn−1 +(−1)n.

Use this to give an alternative proof of Montmort’s formula for dn.

23. Prove that δ (Sn)−δ (An) =
(−1)n(n−1)

n! with respect to the standard actions on {1, . . . ,n}.

24. Compute δ (G) for the standard action of G = PSL2(q). (Hint. By the Fundamental Theorem
of Projective Geometry, no nontrivial element of G fixes three or more points.)

25. Let G be a transitive permutation group of degree n > 2 with a regular insoluble normal
subgroup N. Prove that δ (G) > 1/2. (Hint. If N is a finite insoluble group and ϕ ∈ Aut(N),
then CN(ϕ) 6= 1.) In particular, this implies that δ (G)> 1/2 if G is a twisted wreath product.

26. Let G 6 Sym(Ω) be a transitive group of degree mp, where p is a prime and m < p. Prove
that G is non-elusive.

27. Give an example to show that the primitivity of G is essential in Thompson’s problem on
the transitivity of ∆(G).

28. Let G be an almost simple primitive group of degree n with socle T = Am and point stabiliser
H. Suppose H acts primitively on {1, . . . ,m}. Use Bochert’s theorem to prove that |G| < n4

(cf. proof of Theorem 5.8).

29. Let H 6 Sym(Γ) and K 6 Sym(∆) be permutation groups, where Γ and ∆ are disjoint finite
sets.

(i) For the natural action of H×K on Γ∪∆, prove that b(H×K) = b(H)+b(K).

(ii) For the natural action of H×K on Γ×∆, prove that b(H×K) = max{b(H),b(K)}.
(iii) For the standard action of H oK on Γ×∆, prove that b(H oK) = |∆| ·b(H).

30. Find a base of size m for the product action of Sm oSk on {1, . . . ,m}k, where k 6 m. Is this the
minimal size of a base?

31. Consider the action of G = Sm on the set of k-element subsets of {1, . . . ,m}. Prove that µ(G) =
2
(m−2

k−1

)
(where µ(G) denotes the minimal degree of G; see Section 3.4.3). Similarly, show that

µ(G) = 2mk−1 for the product action of G = Sm oSk on {1, . . . ,m}k.

32. Let G6 Sym(Ω) be a transitive permutation group of degree n. Prove that b(G)µ(G)> n.
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Transitive permutation groups without semiregular subgroups, J. London Math. Soc. 66 (2002),
325–333.

[33] P.J. Cameron and W.M. Kantor, Random permutations: some group-theoretic aspects, Combin.
Probab. Comput. 2 (1993), 257–262.

[34] P.J. Cameron, P.M. Neumann and D.N. Teague, On the degrees of primitive permutation groups,
Math. Z. 180 (1982), 141–149.

[35] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, and R.A. Wilson, Atlas of finite groups,
Oxford University Press, 1985.

[36] H.J. Coutts, M. Quick and C.M. Roney-Dougal, The primitive permutation groups of degree less
than 4096, Comm. Algebra 39 (2011), 3526–3546.

[37] P. Diaconis, J. Fulman and R.M. Guralnick, On fixed points of permutations, J. Alg. Combin.
28 (2008), 189–218.

[38] J.D. Dixon and B. Mortimer, Permutation Groups, Springer-Verlag, New York, 1996.

[39] J.M. Fawcett, The O’Nan-Scott theorem for finite primitive permutation groups, and finite repre-
sentability, Masters thesis, University of Waterloo, 2009.

[40] J.M. Fawcett, The base size of a primitive diagonal group, J. Algebra 375 (2013), 302–321.

[41] B. Fein, W.M. Kantor and M. Schacher, Relative Brauer groups II, J. Reine Angew. Math. 328
(1981), 39–57.

[42] J. Fulman and R.M. Guralnick, Derangements in finite classical groups for actions related to
extension field and imprimitive subgroups, in preparation.

[43] J. Fulman and R.M. Guralnick, Derangements in subspace actions of finite classical groups,
preprint (arxiv:1303.5480).

43



[44] J. Fulman and R.M. Guralnick, Bounds on the number and sizes of conjugacy classes in finite
Chevalley groups with applications to derangements, Trans. Amer. Math. Soc. 364 (2012), 3023–
3070.

[45] J. Fulman and R.M. Guralnick, Derangements in simple and primitive groups, in Groups, Com-
binatorics & Geometry (Durham, 2001), World Sci. Publ., River Edge, NJ (2003), 99–121.

[46] M. Giudici, Quasiprimitive groups with no fixed point free elements of prime order, J. London
Math. Soc. 67 (2003), 73–84.

[47] M. Giudici and S. Kelly, Characterizing a family of elusive permutation groups, J. Group Theory
12 (2009), 95–105.

[48] M. Giudici, M.W. Liebeck, C.E. Praeger, J. Saxl and P.H. Tiep, Arithmetic results on orbits of
linear groups, Trans. Amer. Math. Soc., to appear (arXiv:1203.2457)

[49] D. Gluck and K. Magaard, Base sizes and regular orbits for coprime affine permutation groups, J.
London Math. Soc. 58 (1998), 603–618.

[50] S. Guest, J. Morris, C.E. Praeger and P. Spiga, On the maximum orders of elements of finite
almost simple groups and primitive permutation groups, Trans. Amer. Math. Soc., to appear
(arXiv:1301.5166)

[51] S. Guest, J. Morris, C.E. Praeger and P. Spiga, Finite primitive permutation groups containing a
permutation having at most four cycles, preprint (arXiv:1307.6881)

[52] R.M. Guralnick and D. Wan, Bounds for fixed point free elements in a transitive group and appli-
cations to curves over finite fields, Israel J. Math. 101 (1997), 255–287.

[53] Z. Halasi, On the base size for the symmetric group acting on subsets, Studia Sci. Math. Hungar.
49 (2012), 492–500.

[54] Z. Halasi and K. Podoski, Every comprime linear group admits a base of size two, preprint
(arXiv:1212.0199)

[55] D.R. Heath-Brown, C.E. Praeger and A. Shalev, Permutation groups, simple groups, and sieve
methods, Israel J. Math. 148 (2005), 347–375.

[56] C. Hering, Transitive linear groups and linear groups which contain irreducible subgroups of prime
order, II, J. Algebra 93 (1985), 151–164.

[57] J.P. James, Partition actions of symmetric groups and regular bipartite graphs, Bull. London Math.
Soc. 38 (2006), 224–232.

[58] G.A. Jones, Primitive permutation groups containing a cycle, Bull. Aust. Math. Soc. 89 (2014),
159–165.

[59] C. Jordan, Recherches sur les substitutions, J. Math. Pures Appl. (Liouville) 17 (1872), 351–367.
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